Polynomial Approximations to
Integral Transforms

By Jet Wimp

1. Introduction. The symmetric Jacobi polynomials P{**(z), orthogonal on
the interval —1 < z < 1, are widely used for approximating functions, but the
integral which defines the coefficients for the expansion of a function g(z) in these
polynomials usually is quite difficult to evaluate. The problem is simplified if g(z)
is an integral transform of the Fourier or Laplace type, since the kernel of the trans-
form generates a series of the above polynomials. The coefficients in such cases are
found to be Hankel transforms, which are widely tabulated.

Examples include Chebyshev polynomial expansions of 1/(z + @), ¥(z + a),
log T'(z + a), Ci(x) and Si(z). '

2, Formulas When ¢(x) is a Laplace or Fourier Transform. The symmetric
Jacobi polynomials {1, v. 2, p. 168] may be defined by
(1) PE®(z) = (") oFil-n,n 4+ 20 + L& + 1; 4 — al.

A function g(z) satisfying certain conditions has the expansion

(2) 0@) = 3 4P (@), -1
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8
IA
-

(3) 4, = (2n 4+ 2a + 1)n!T(n + 2a + 1)
o 2T (n + « + 1)

Suppose now that g(z) is the Laplace transform of some f(¢),

(4) o(a) = 20} = [ eie) ae = 3 4. (a).

[ o1 = )P as.

To determine the A.,’s replace the kernel of the Laplace transform by its Neumann
series [1, v. 2: p. 98, No. (1); p. 175, No. (16); p. 174, No. (6) ; and the duplication
formula for the gamma function].

: (5) e-‘ﬁ = "Z‘o (_)"Qﬂ I""“tﬂ;ll/fz(t) Ps‘a,a)(x)’

2" %" (n + a + PHT(n + 22 + 1)
© == T+ at D :
Then (4) yields
(7) A, = e Dinig 5 {jt_'f_g . ’
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(8) se{F(t)} = [ F(0)J,(yt) (ut)™" dt.

3¢{F(t)} denotes the Hankel transform of F(¢) [2].
When a = —3, (7) furnishes the coefficients for the Chebyshev expansion

O) o@) = [ e d =X T,  -1szs1,
0 na=f
where
_ . e, [f(2) - Ln=0,

rump

If we replace ¢ by it in (5), we find that the same method is applicable when
g(z) is a Fourier transform of f(¢). We omit details, but the key results for the sine
and cosine transforms are as follows.

(11) o = [ aa=F FPrOG@), -1szsi

where

0, neven,

(12) Su = e(n—l)[rt’/ﬂﬂnsc J_@ n Odd,
\t‘ﬁ'l y=1
runtatl/2
and
0, n odd,
(13) Co = "%, 3¢ {{f_,_—tl)lv_l , n even.
yemnta+1/2

—k
3. The Chebyshev Expansion for 1/(y + a)*. Let g(z) = [Z 1, a] _
Then

‘)k

(14) €)= 1

1)‘ e-(?a+1)ttk—-l = f(t)-

z ;L ! Then T.(2y — 1) = T.*(y),0 < y < 1, is the shifted

Chebyshev polynomial {3] and

Use (10) and let y =

1 _[Sal=)k+n—1) .
ay TEF T
. ________2“+1- *(, 2 k2
[zm]Tn(y)}/(a+a) 0<sysl a>0,

where P,*(z) is the Legendre function {1, v. 1. p. 120]. For k = 1, (15) agrees
with a result of Luke [4].
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4. The Psi and Log Gamma Functions. These examples show how a property
of the Laplace transform may be used to advantage when applying (4) and (8). We
know that

(16) Ll f(1)} = g(z + a).

If g(z) cannot be expanded in symmetric Jacobi polynomials, a in (16) can often
be chosen so that g(z 4+ a) has a convergent expansion. Let

(17) g(z) = ¢™(z) = D" log T(a).

Since ¢™ (z) has poles at zero and the negative integers, we cannot expand the
function over —1 < z < 1. However, if

(18) 9(z) = ¢v"™(z + a),
then
(19) f(t) = &74g(x)} = (=)™ "1 — 77,

and if Re(a) > 1, (7), and in particular (10), may be used since (18) is analytic
for | z | £ 1. Substituting (19) in (10) and expanding (1 — ¢ *)~' by the binomial
theorem, we have

e [WE=I- x)“]
(20) Co = enk;oﬁ[ 2 -1 a:-lc+a.
Setting m equal to zero, we get
(21) Cr = eZ[“’“J”‘V “("’+“)J" nz1
*k + a)* — -
TaBLE 2
Coefficients for the Series
Ci(z) = f c_oit dt = log(x) + Zo A2, T, (g) ) 0< z=a
Si(z) = .L s—‘m—tdt Z B2n+1T2n+l (g) , -asSrsa
n=0
a=2 a =35
" Az Bann Az Bansi

0.13529 62627 | 1.69809 00708 |—0.96313 15550 | 2.08578 21107
—.42327 51922 | —.09558 49521 |—1.13103 16550 | —.67042 59749
.01822 27219 .00295 78196 .34661 70891 .15186 68742
—.00041 57650 | —.00005 14215 | —.05698 43620 | — .01861 43512
.00000 56716 .00000 05642 .00537 47844 .00138 96747
—.00000 00511 | —.00000 00042 | —.00032 52237 | —.00006 95137
.00000 00003 .00001 36729 .00000 24908
.00000 04226 | —.00000 00671
.00000 00100 .00000 00014
—.00000 00002 —
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If n = 0, (21) diverges, and for n = 1 the series is slowly convergent, but since
T.(1) =1, T.(=1) = (—)", we may solve for Cy and C, in terms of higher com-
putable coefficients, i.e.,

[c.,a"‘(““)*"(““)—icu,

2 k=1
(22) ©
e _¥a+1) *2-4/(0— 1) —;:IC’“"‘

Integration of the series defined by (21) yields a Chebyshev expansion for
In C(z 4+ a) because [3]

(23) [ 1@ dz = _[ Tui(z) T._l(x)] i

+1 n—1
In Table 1 are listed coefficients for the Chebyshev expansions of ¢(x + a) and
log T(z + a), @ = 2(1)5,n = 0(1)15 to 8D.
5. The Sine and Cosine Integrals. For examples of (11)-(13) let
(24) gl(z) (1 — cosar)/z l ) sin ot ,

g:(z) ~ sin az/z cos t
1, 0<z<a,

(25) f(t) =
0, a<z< ™.

Using (2, v. 2, p. 333, No. (1)] to evaluate (12) and (13) for « = —4, we find that

J 0, n even,
(26) Su = . 2
L4€(n_l)["m p;o J,.+u+1(a), n Odd,

0, n odd,
(27) Cn = Y —
2eae™" " 2_:0 Jasmfa), neven.

Let a = 2 and 3 in (26) and (27), and use [1, v. 2, p. 145, No. (6)] and (23) to
obtain the expansion whose coefficients are listed in Table 2.
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