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1. Introduction. The purpose of this paper is to report on a method for the nu- 
merical solution of simultaneous integro-differential equations of the form 

co nmax nmax 

E (lkn(x, g)g(n)(r)) dy = Z lPn(x)f() (x) 
n=O n=O 

g0 nmax nmax 

L; E (2kn(r, )f (8)) dO = 2P (r) (r) n=o n=o 
where the asymptotic forms of f(x) and g(r) are known; and where lkn and 2kn are 
the kernels. The method, which is reasonably simple to program for a computer, has 
been tested on a problem arising in nuclear physics and yielded reasonable results. 

2. Motivation. A great deal of effort has gone into evolving satisfactory numeri- 
cal methods of solutions of differential equations. Much less has been done in the 
field of integral equations; Fox and Goodwin [1] have given methods for solutions 
of equations of the form 

b 

(2.1) ] k(x, y)f(y) dy = p(x) + f(x) 

where p(x) and k(x, y) are known functions. Their method is to write the left-hand 
side of equation (2.1) in its finite difference form 

b==a+mh m 

k(x, y)f(y) dy =i: An k(x, nh)f(nh) + ir, a ~ ~~~~~n=o 
where An are the coefficients and ir. the truncation error of the particular quadrature 
chosen. The substitution of equation (2.2) into equation (2.1) for x = a, a + h, 
a + 2h, , a + mh, gives m + 1 simultaneous equations in ir! and the m + 1 
unknowns f(a), f(a + h), ... , f(a + mh). The truncation errors Ir. may be made 
negligible by suitable choice of step-length or treated by the iterative scheme given 
by Fox and Goodwin; the equations may then be solved by any, of the standard 
methods. 

In the same paper they note that this method extends itself immediately to 
integro-differential equations of the following form 

b m 

(2.3) f k(x, y)f(y) dy = Po(x) +f(x) + E pn(x)f(n)(X) 
a ~~~~~~~~~~~~n=l1 

where f(n) (x) is the nth derivative of f(x), and kl(x, y) and pn(x) are known func- 
tions. The only additional substitution needed is the appropriate finite difference 
approximation for the derivatives. The treatment of the end points depends upon 
the boundary conditions, but in general causes no trouble. 
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There arise in nuclear physics equations of the following form: 
c0 nmax nmax 

(2.4) I E (lkn (zX,)g"8)(r)) dy = E lPn(X)f ") (X) 
n=O n=O 

c0 nmax nmax 

(2.5) f E (2kn(r, O)f(n)(X)) dO = E 2Pn(r)g(n)(X) 
n=O n=O 

where x, y and r, 0 are related coordinates 

x = at(r, 0) 
(2.6) 

y = p(r, 0). 

The problem is to compute a table of values of f(x) and g(r) for x = r = a, 
x = r = a + h, x = r = a + mh (these values of x and r will be referred to 
as the mesh points). 

Equations (2.4) and (2.5) differ from equation (2.3) in the following significant 
respects: 

a) The appearance of the derivatives of the unknown function in the integrand 
b) The infinite interval of integration; that is, the equations are singular in the 

sense of Fox and Goodwin 
c) The appearance of two naturally occurring coordinate systems; a finite 

difference mesh at even intervals in one coordinate system does not in general repre- 
sent even intervals in the other. This reflects the fact that (2.4) and (2.5) are two- 
dimensional equations, although only of a restricted type. 

3. Method. The method of Fox and Goodwin can nonetheless be used, but with 
appropriate modifications, to take care of the above difficulties: 

a) The derivative under the integral sign may be replaced by an appropriate 
finite difference approximation; for example, the second difference might be used 
for the second derivative. 

b) The infinite integrals can be made finite if there is a point beyond which 
the contributions of the integrand are negligible. However, in general, this will in- 
volve values of x and r outside the range in which the solution is desired. 

c) Any two of the four coordinates determine the other two by relation (2.6). 
For example, in equation (2.4) r takes on the values a, a + h, ... , a + mh; but 
for a given r it is necessary to integrate over y. Each combination of r and y gives 
by equation (2.6) a value of x which may or may not be a mesh point. Two cases 
naturally follow: 

a) a< x <a+mh but x a+ih insidethemesh i = 0,1,2, 2 m 

b) x < a or a + mh < x outsidethemesh. 

The first difficulty may be taken care of by interpolation. If, for example, linear 
interpolation is chosen and x lies between the mesh points xi and xi+, 

f(x) = f(xi)q + f(xj+j)p 

p =1-q X-Xi Xi < X < xi+ 
xi+1 - X1 
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Similarly, after substitution of the second difference, 

f"(x) = pf(xi+2) + (3q - 2)f(xi+1) + (3p - 2)f(xi) + qf(xi_i) xi < T < xi+j. 

Alternatively, if x lies beyond the end values of the mesh, it is possible to em- 
ploy the (assumed known) asymptotic forms of f(x) and g(r). Here the assumption 
is made that the last two mesh points x = r = a + (m - 1)h and x = r = a + mh 
are in the range of validity of the asymptotic forms. Suppose, for example, the 
asymptotic form of f(x) is known to be 

(3.1) f(x) -+AO,(x) + B2(x) x > X 

where t1 and 0 are known functions; and A and B are unknown constants to be de- 
termined a posteriori from the solution of the problem. Thus by our assumption 

f(a + (m - 1)h) = A4l(a + (m - 1)h) + B2(a + (m - 1)h) 

f(a + mh) = A4l(a + mh) + B42(a + mh) 

A and B can thus be solved for in terms of the two unknown end values 
f(a + (m - 1)h), f(a + mh); and these expressions can in turn be substituted 
back into equation (3.1) giving 

1 
f (x) qqi(a - (m - 1)h)02(a + (m - 1)h) 

|X(a + mh) 42(a + mh) 

\|f(a + mh) fi(a + mh) } 1(x) + f(a (m- 1h)i(a +(m - 1)h)f(+m-1h 

f| m(a + mh) f(a + mh) 

=-f(a +(m-1l)h) 1 (a+m)(x 
fl(a + (m - 1)h)f (a + (m - 1)h) + h ( 
fi(a + mh) m(a + mh) 

- fl(a + mh)-1(x)) +f(a + mh) 1 
01(a (m s1)h0(a + (m - 1) h)c(+m-1h 

01(a + (m - I)h)02(a + (m - 1)h) 
41(a + mh) p2(a + mh) 

.(G1(a + (m - 1)h)02(x) - c2(a + (m - 1)h)qh(x)). 

Thus if x is not a mesh point, it is possible by interpolation and the use of the 
asymptotic form to express f(x) in terms of the value at mesh points. In the same 
fashion the difficulties are overcome in equation (2.5) when r takes on the values 
r = a, r = a + h, , r = a + mh. 

The appropriate mesh size, interval of integration and cut-off point for the in- 
finite integral depend upon the problem. 

4. Example. In the discussion of neutron-deuteron scattering by the resonating 
group method including inelastic channels [3], the following equations arise: 
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3 df(x)+ 2m (E- Ed)f(x) +2m Voro2f( (x) fG ( ) 
2 dx h2 h2 x J 

(4.1) + x (r-5/2drg(n) 15r9/2 g(r))4O(y)ydy + h2x 

go fGi(x, y)g(r) dy =0 

16 1/2 r/ (3 d2 f(x) )f( (y) sin cos a da + dr2() 

(4.2) + G2( -15 2mE 2m / 

4g (r) + ? g(r) + m g(r) j G3(r, a) sin2 a cos2 a da = 0 

x =- 4r cosa y = - r sin a 

Go 2= 
y 

() x [12 (2 +2 Y)]exp xY -exp (x82) Go -2 Yexp[1 (x2+) epexp 

GI= 2 + yo exp - + 

r5/2y~~~~~~ [exp (:-xp(r 

G3 16o [xp _y) +rO xp - 2 (2 + y - )] 

erp exp --exp(xy) 
Lro2 ;) ][x \ rO/) 

For 2r E it Edalls ~ exp (x2 e n+ - expl2 h xy ro 4~ ~()( yy 
* exp -2 -exp x 

16lVo[ (Y) roex[i(2 Y)] 

* [exp ( - exp 

The function 4 (y) and the eigenvalue VO were calculated numerically by a 
separate program. 

Ed is the (negative) deuteron energy; m the mass of a nucleon. The potential 

between two nucleons is the Gaussian form -VO exp (_r 2) . 

The unknowns f(x) and g(r) represent respectively the elastic and inelastic 
scattering wave functions. 
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Two Independent Solutions (fl,g, and f2,92) of Equotions [4.1],[4.2] 
wvith Boundary Conditions f (O) =g (O) - O; f, (5) - g91(5)=-1 

f2(5) = , 92 (5) + I 

fois the Solution of [4.1] Obtained by Assuming g(r) 0O 

FIG. 1. 

\ 92 

2 - 

-2 - 
Two Independent Solutions (fj,gj and f2,92)of Equations [4.1],[4.2] 
with Boundary Conditions f (O)-zg(O)-=O;f (5) --g,(5) z-1 

-3- f2(5) 
z - I1, g;2 (5) - + I 

fo is the Solution of [4. 1] Obtained by Assuming g (r) O 

FlIG. 2. 

The equations are of the form of equations (2.4) and (2.5), and have been 
solved by the methods described here. The asymptotic forms of f(x) and g(r) are 

(4.4) ~ f(x) = A sin (knx) + B cos (1k,x) 2h2k7, = 3m (E -Ed) x -* 

g(r) -Crl'2J2(kr) + Dr'12N2(kr) h'k' =2mE r oo 
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where Jn(z) and Nn(z) are the Bessel functions of the first and second kind of order 
n as defined in Jahnke and Emde [2]. 

The application of the above techniques for solving the equations is straight- 
forward. The integrals of infinite range converge rather slowly, so that the back 
interpolation (equation (3.2)) has to be applied over a wide range of r; however, 
this can be avoided in this example by noting that for r such that equation (4.4) 
is valid 

(r5 /2 -4r912 + h G,) g (r) = 0 

since this reduces to the Bessel equation satisfied by g(r). The second and third 
integrals in equation (4.1) can then be cut off at this point, which is long before the 
individual terms are negligible. Moreover, the first integral converges very rapidly 
and is negligible even before this cutoff point is reached. The equations have been 
solved in particular cases both with and without taking note of this point; the results 
were comparable but the computing time was reduced from fifteen to three minutes. 
Difference corrections were neglected; the mesh size was varied until stability was 
reached with the accuracy required ('--3% ). Figures 1 and 2 give a plot of the results 
of runs for E = 0, E = 7; the constants used were (lengths in units of 10-'3 cm; 
energies in Mev) 

2m 
ro = 1.332 V0 = 86.674 Ed= -2.226 2 = .0481933 

h(y) = .2 h(x) = .25 = h(r) E = 5. 

The asymptotic form was used for r, x ? 4.75. Other runs were made for E = 
0.5, 1, 3, 5; for E = 0, the asymptotic form for g(r) is modified. Also plotted in 
Figures 1 and 2 are the results obtained by solving equation (4.1) for f(x) setting 
g(r) = 0 (physically, neglecting the effect of the inelastic channel upon the elastic 
channel). For further detail of the numerical results see [3]. Higher values of E were 
not used because the end point of the mesh used (r = 5) is close to a zero of g(r) 
for E of the order of 10. 

The problem was coded in SAP for the IBM 704 at M.I.T. Coding was straight- 
forward; the most laborious task was debugging-a single suitable hand check took 
several days to complete. The program was approximately 2,000 instructions long. 
Running time for the coefficients from (4.1) was from 2.5 to 7 minutes depending 
upon mesh size; 2 minutes for the coefficients from equation (4.2), and one minute 
for the matrix solution. 
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