
Stability Analysis and Integration of the Viscous 
Equations of Motion 

By L. Filler & H. F. Ludloff 

1. Introduction. Techniques are established for the numerical solution of the 
time-dependent, one-dimensional equations of motion of a viscous, heat-conducting 
fluid. The equations of motion are approximated by suitable finite difference equa- 
tions and the stability of the difference equations is investigated by using von 
Neumann's error analysis. Both explicit and implicit finite difference schemes are 
studied. The implicit equations are solved by an iteration scheme that is formulated 
with the requisite that its convergence does not place conditions on the mesh width 
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The dimensionless equations of motion to be treated are written in divergence 

form [1] 

ap + aM - O 
At ax 

AM aR 
at ax 

aE aT 
at Ax 

where p is the density, 111 the mass flow vector, E the total energy, and R and T 
are vectors which are certain non-linear combinations of p, M, and E, namely: 

R = (e )E+ 3-7 M_ 4 a(M/p) 2 3 ax 

ME y-1 M3 (4 ly M a(M/p) y a(E/p) 
_ p 2 p 3 O' p ax ax 

with the usual notation that y is the ratio of specific heats (constant = 7), t the 
coefficient of viscosity which is assumed to vary linearly with temperature, and a 

the Prandtl number (constant = 4). 

This system of differential equations is replaced by a system of difference equa- 

tions as follows. Derivatives with respect to time af are approximated by the for- 

ward difference quotient 

wn - fnvu fmi,n} 

where fm,n denotes the value of f at the lattice point x = mAx and t = nAt. Space 
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k 
derivatives are approximated by the difference quotients 

(AX)-k 
k 

(-1) Q)fm+k'-X,n+w 
X=0 

ik\ k 
where denotes the binominal coefficient and k' is the largest integer < The 

index w = 0 for the explicit difference scheme formulation and w = 1 for the im- 
plicit scheme. Note that this approximation yields backward first differences in 
space and centered second differences in space. 

Both the explicit and implicit difference approximations are used to compute the 
formation of a shock wave from a finite amplitude compression pulse. The computa- 
tions were carried out on an IBM 650 digital computer at the Watson Scientific 
Computing Laboratory of Columbia University. 

2. Explicit Difference Scheme. The explicit difference equations are with the 
notation Afrn-l,n = frn,n - fm-l,n 

Pm,n+l = Pm,n - - AMmJ,n Ax 

Mm,n+1 = Mm,n - ARm1,n 

Ax 
Em,n?i = Em,n~ - Axml 

where, for example, 

ARm1,n = (Y - 1 )AEm1, n + A 
2 p m-1,n 
2 

--[A~I2miln] [A (-!) j - / lm,n A2 (-i)m~ 3 pAm1n 
A 

-, p m_l,nA 

The linear variation of the coefficient of viscosity with temperature is written 
in terms of the dependent variables as 

/.m,n = y - 1) [( )m ()- 
p m,n 2 p m,n 

The computation of the explicit difference equations proceeds directly, since all terms 
on the right-hand side of the equations are known values taken at the previous time 
cycle. The unknowns on the left-hand side are computed at each lattice point of the 
mesh in the new time cycle. 

The analysis of the stability of the difference equations follows the procedure of 
von Neumann [2]. However, the original system of equations is non-linear, and the 
variational equation obtained for the error has non-constant coefficients. In order 
to apply von Neumann's method of stability analysis the coefficients are sys- 
tematically set constant, and all derivatives that appear in the coefficients are set to 
zero. Setting the derivatives that appear in the coefficients of the variational equa- 
tion to zero is arbitrary. One could, with as much justification, consider them con- 
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stant. However, the stability analysis is greatly simplified if only those terms not 
having derivatives as coefficients are retained. This does not seem to impair the re- 
sults of the analysis when checked against actual computation. Indeed, when such 
a treatment is applied to the non-viscous hyperbolic equations of motion, the cor- 
rect result is obtained: that stability is determined in terms of the characteristic 
directions [3]. Thus, the variational equation obtained from the system of difference 
equations may be written 

Um, n+i = [I - A]Um,n + BUm+l,n + CUm_l,n 

where 

Um,n = (2m,l 

\/m,n 

Substituting for the error the Fourier term oeateiex leads to the result: 

(2.1) XUo = [I -A(1 - cos 0) + iD sin 0]Uo . 

Here X= eat and 0 = fAx 

and the matrix D = B -C. Note that A = B + C. Let H = -A(1 - cos 0) + 
iD sin 0 and write the spectral equation (2.1) as 

[H - KI]Uo = 0 

with K = X- 1. 

The elements of H are, with F = A (1 -cos 6), 
A 

= sin 0, and in combination 
Ax ~~~Ax 

+= +iA 

hi, = 0 

h12 = -b 

h13 = 0 

h2l = 3 2 D u2+ ut r 21 2 3 Ax 

8 v h22 = - (3-y)u(b - Ar 3 Ax 

h23= -(e-Y 

h31= -[( e- )u3-' E bB+2[Q-_2)U2+liE] vF 

h = -[y- ( - (e1)u2> - 2 - V r 

h33 = -yu - 2 F . 
o- Ax 
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Here v is the kinematic viscosity coefficient ,u/p. Now, K the eigenvalues of H satisfy 
the cubic equation 

K3 - [h22 + h33]KA2 _ [h12h2l + h23h32 - h22h33]K - [h12h23h31 - h12h2jh33] = 0 

and it may be verified by direct substitution that 

(2.2) K = - += 2 
v 

2 
- yA. 

is a root of the cubic equation if a = 3. Factoring this root, the roots of the remain- 
ing quadratic are 

(2.3) K = [ ? + Ir] + a2/a)2+ ^ ( \2 
L - Ax i V Ax/ 

where 

a2 = Ey -1) [E _Pt2]. 

Thus, the requirement for stability I X = K + 1 ? 1 yields respectively, 

(2.4) 1-[ub+2 v] ?1 

(2.5) 1 {u +2 r+ /a2-2(2 V) 2} ? 1 

and 

(2.6) 1 {u + Yv /I22+(eV)2} ? a 1. 

Each of the above inequalities must be considered to determine the conditions 
for the numerical stability of the difference scheme. For example, it may be shown 
that inequality (2.4) has a simple geometrical interpretation, viz., the absolute value 
of the locus of the ellipse in the complex -, t plane is less than or equal to one, where 

X = 77 + it 

q = 1 - r + 2 vax 

and t = uit. 
Thus, the stability condition obtained from (2.4) is 

At <1 
(2.7) Ax v 

u + 2 Ax 
a-Ax 

The form of the inequality (2.5) suggests the conservative approximation 

|1-{(u+aa) +2 2 v} ?1 
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which gives the stability condition 

At 1 
(2.8) Ax y v 

u + a + 2 - a Ax 

The inequality 2.6 is approximated by 

1 Ub ' v + aZ X r I1 + <(\ ) 

This condition is critical when u = 0, since it can be fulfilled only if 

Re{1 + - ab \ 

l- A?/x JJ 
and 

Im 1 + 2 (a)} 0 . 

Consequently, we require 

?>> a I=o . 
a- Ax 

For practical purposes, it has been verified when calculations were carried out 
that a reasonable estimate is 

(2.9) I > v > 3 a 
a- Ax -2 

The most stringent restriction on the 'mesh width ratio is 

At < 1 
(2.8) Ax 

- 
+ a2iL (2.8) 

~~~~~u + a + 27- 
a- Ax 

which together with (2.9) give the conditions for stability of the explicit difference 
equations. 

It may be noted from (2.2) and (2.3) that in the limit as the viscosity tends to 
zero the eigenvalues K degenerate properly so that the correct stability conditions 
for the hyperbolic equations of motion are obtained. 

3. Implicit Difference Scheme. The implicit difference scheme equations are 
written out in full 

Pm,n+l Pm,n- - AMmi1,n+1 Ax- 

Mm,n+l Mm,n - (y - 1) 
At 

AEmil,n+l 
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3 3- - At M28 

2 Ax \p m-1,n+l 

+4 At A2 
3 P (Axl)2 M),n+ 

Emn+l = Em n - At A (ME) 
Ax \ p )m-l.n+l 

7-1 lAt 'M3\ 

+ -Y Jt (Ax) 'LL 2 Ax 2 (m-l,n+l 

+ y At A2 

+ (3 p ) ju X) 2 {[ ( m-1.n+Il 

p m ,n+l p m-1,n+I} 

+ ,L17 At 
A2 

{Ej 
a (Ax) 2 p / m-1,n+l- 

Note that the implicit difference equations are written with the assumption of 
constant coefficient of viscosity ,u to facilitate solution by an iterative method. 

An inspection of the implicit difference equations reveals that the continuity 
equation occupies a preferred position in the system of equations. The Pm,n+l to be 
computed depends only on unknown M's at the lattice points m, n + 1 and m - 1, 
n + 1. The computations are started from a left-hand boundary, or from a region 
where conditions are known to be constant, so that the point m - 1, n + 1 falls 
on the boundary or in the region of constant value. Thus the values of p, M, and E 
at the lattice point m - 1, n + 1 are known. Then, for the continuity equation, 
the only unknown is the Mm,n+l . To obtain an approximate value of Mm,n+l the 
momentum equation is set up for solution by an iteration procedure. When the 
Mm,n+1 has been approximately determined, it is inserted into the continuity equa- 
tion and an approximate value of Pm,n+l may be directly computed. Proceeding in 
this manner along a line of computation m + 1, the Mm+l,n+l is next calculated by 
iteration, after inserting the previously determined values of M and p at the lattice 
point m, n + 1. In this way approximate values of M and p are computed at all 
lattice points on the line n + 1. When these values have been determined, the energy 
equation may be set up as a three-point recursion formula for Emi,,n+l , Em,n+l , and 
Em+i,n+l which may be solved by a standard reduction procedure. When the first 
set of computations has been completed we have approximate values of p, M, and 
E at all lattice points on the computation line n + 1. The calculations are repeated 
until convergence is achieved.* 

The procedure for computing the momentum equation takes the form of a sys- 
tematic relaxation method. Setting up the difference operator 

Gn,n+i = A3 (Ax)2 _ 1 l,nal 

* This procedure was adopted upon the suggestion of H. Keller, Institute of Mathematical 
Sciences, New York University. 
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-4 {(M,n+ Mm,n) 

+ (-y-1 - AE 1)l,n+l Ax 

+3-y 4At A AM) 

where the iteration number is given by j. We then write the following equation for 
Mj+1 

(3.1) M, n +1= Mn,n +1+ Gn,n+l 

Approximations to the unknowns at iteration number j are inserted into the ex- 
pression Gjn,n+l leaving a remainder or residue, since the exact values satisfy 
Gjngn+l= 0. The residue is systematically reduced by the factor a until convergence 
is obtained. 

The remaining equations are written so that they may be solved directly once 
the approximations to the momentum equation are available. 

(3.2) Pm,n+l = Pm,n - Ax rMmjni,n+1 

+ ly 
Ax ( p )m,n+ +l2 

2f 

p + (Ax)2 
Erj,n 

+ 

_ y ______ At__ [ At IM \ j+i ly ~ At E+1,~~ y - 
j-+1 ()2 E+ln+l L Ax \ PrJ 

(3.3) 
ff~~ 

Ply ,, + AZz)t Ej+1 Em,n j h+1 (AX)2J m-l,n+l r, 
(3.3) (-1 n1 

+ (M)j+1 At A m3j+1 

+ 2 Ax p2 /n-,n+l 

+AA 

In (3.2) the m-, ,n+1 is known and the Mmjn+nl+l is inserted from the solution of 
(3.1). In (3.3) the coefficients of the E+ may be computed after the values of 
M and p have been found from (3.1) and (3.2). The right-hand side of the equa- 
tion is similarly given. Equation (3.3) is thus a linear system of equations in the 
unknowns Ej+',n+l . This system is tridiagonal and may be written as follows: 

k 

(3.4) apqEj+l - bp; p = 1, 2, k 
q=1 

The matrix (apq) is triangularized by letting 

at apq 1 
pq ap(p;1) 
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and 

a*= ap a a(P_1) p # 1 
a(p_4) (p-1) 

Equation (3.4) becomes 
k 

(3.5) EZa*qEq+il+l = bp; p = 1, 2, k 
q=1 

with the triangular matrix a*q. Equation (3.5) is easily inverted to yield the 
E.j s,n+l. 

The convergence of the iteration procedure used for the momentum equation, 

(3.1) m,n+l = M-j,n+l + SGj,n+l 

follows the techniques used to analyze the stability of the explicit difference scheme. 
Equation (3.1) is "linearized" and a von Neumann analysis of the "error" is made 
[4]. 

Convergence of (3.1) implies convergence of the continuity and energy equa- 
tions. To establish convergence of the iteration scheme we consider convergence 
of the Mm,n+l iterates with predetermined values of p and E obtained at each lat- 
tice point from (3.2) and (3.5) respectively. 
Thus, 

Mi+1 M + ^ {4v MAt L1, m,nfl+ Mm,+ 3 Ax AxAMm1n1 

-3 U IL A2 pmn-l m,n+l- Mm,n) 3AxAx 

+ (Y - 1) 
At 

AEmjnl,n+l 

(3.6) 
+ (3 - y) u Ax AMml,n+l 

2 ' u2 At 'A4ip ]} 

Herev= ,u=- 
p P 

Before introducing an error for the iterations we note that Mm,n is considered an 
errorless input, and by virtue of holding p and E fixed at each lattice point they will 
also be errorless inputs. Therefore, the error term considered is 

m,tn+l = eaje#x. 

This term is introduced into (3.6) with fixed p and E, giving 

ea = p + qcosO + irsin 0 
where 

f1- 1 +8 v +(3- y)]uAt} 
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q + (3 A 
q 3 Ax +( a)u]Ax 

r = -6 (3-y) uAt 
Ax 

Since q2 > r2 the convergence requirement is 

(3.7) p1 + Iq ? 1 
which yields upon substitution of p and q 

0? t< 1 
(3.8) 1 + [8 v 

+ (3 A) t ] 

if u > 0. The inequality (3.8) identically satisfies (3.7). However, (3.7) may be 
satisfied with 

>~~~~~~ 
(3.9) 1+ [8 vx + (3-7 8at 

L3 Ax 7 JAx 
If (3.9) holds we get from (3.7) that at most 

< ~ ~ ~~~1 
(3.10) !?F-? (3)v1At (3.10) 

2~~~~ + [3z\ + (3 y) u 
\ 

2 L-3Ax 7 IAx 
The least restrictive condition on a that covers all cases is obtained from the in- 
equality (3.10). 

Thus, the mesh width ratio may be arbitrarily chosen for the implicit scheme 
but convergence of the iteration procedure is obtained by choosing 6 according to 
(3.10). 

4. The Formation of a Shock Wave. The formation of a shock wave from a finite 
amplitude pulse has been numerically treated in three ways. First, a technique due 
to Lax [5] was used, where the equations of motion of an ideal fluid are used to com- 
pute flow fields in which shocks may develop. Second, the explicit difference formula- 
tion of the Navier-Stokes equations has been applied to the problem, with restric- 
tions on the mesh-width ratio as previously determined in Section 2. Third, the 
implicit difference scheme approximation with the previously described iteration 
technique has been applied. An isentropic initial field is prescribed consisting of two 
homogeneous states of different velocity, pressure, and density connected by a 
simple compression wave. The problem is then formulated by asking for the develop- 
ment of this field in time as governed by the equations of motion. In particular we 
look for the time required for the shock to form, the shock's final shape, and espe- 
cially how the entropy profile, characteristic of shocks, develops. 

The numerical values used are 

(2) P1= 1 P2 = 3.35 
M1= 0 M2 = 4.52 

( \1 ( ) El = 1.885 E2 = 12.6 
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The initial velocity decrease from state (2) to state (1) is linear. The unit 
length, f, was subdivided into 32 space intervals Ax. For the viscous equations a 

viscosity parameter = 1 was taken for both the explicit and implicit difference 

schemes. This value is seen to satisfy the inequality (2.9) with -y = = 3 and 
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a luo = 1. The stability criterion (2.8) for the explicit scheme with the specified 
initial field values is 

= 0.155 for the viscous equations 
Ax 

= 0.366 for the ideal equations. Ax 

For the implicit difference scheme we obtain* 

a = 0.167 

from (3.10) and arbitrarily chosen t 1. 
Ax 

The computation of the viscous implicit equations is somewhat arbitrary; the 
machine controls should be flexible so that the most economical way of solution 
may be found. The values of M and p should first be computed at each lattice point, 
then inserted back into the equations for M and p and computed a second time. 
Then these second computed values of M and p are used to compute E. The process 
is repeated until convergence is reached. Thus, two "inner" iterations for M and p 
per "outer" iteration for E was found to give the most rapid convergence (9 outer 
iterations per time cycle). The results of the machine computations are shown in 
Figures 1 and 2 for the ideal equations, Figures 3 and 4 for the viscous explicit 
equations, and Figures 5 and 6 for the viscous implicit equations. In each case, the 
time development has been continued until the form of the profiles becomes sta- 
tionary, i.e., only a translation takes place. This was coincident with the time at 
which the entropy had built up to the value to be expected from stationary shock 
theory for a shock of the given pressure discontinuity. 

The velocity profile, which falls off linearly within 32 mesh intervals in the 
initial field, steepens rapidly, especially in the ideal rather than in the viscous case. 

In the ideal case it takes approximately 100 time cycles, in the viscous explicit 
case 140 time cycles, while in the viscous implicit case approximately 21 time cycles 
to reach the final state. But the absolute time for the shock formation, while essen- 
tially equal in the viscous cases (t = 0.67 explicit; t = 0.66, implicit) is longer in 
the ideal case (t = 1.14). This is, of course, to be expected since the entropy buildup 
is proportional to the viscosity present. 

Note also that the slope of the entropy curves is steep in front, as it should be, 
but falls off to zero in the rear, indicating that the air particles at the rear have not 
been swept over by the fully developed shock. 
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* a = 0.2 was found in practice, to give convergence of the iteration scheme. 
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