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N = a2- b 

where 

a = (23 532 53 2)x + 11 150 802 925. 

This representation of a can be deduced from theory presented by Kraitchik [1], 
combined with the fact that both -1 and 5 are quadratic residues of N, as estab- 
lished by suitable representations of N by quadratic forms. 

Corresponding to x = 102908, a2 - N is the square of b = 114674787084. Hence, 
N is the difference of the squares of a = 115215488845 and of the preceding value 
of b. Thus 

N = 540 701 761 229 890 275 929. 

The primality of each of these factors was determined in a similar manner. The 
factorization of 2159- 1 is, therefore, now complete. 
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Two Formulas Relating to Elliptic Integrals 
of the Third Kind 

By J. Boersma 

Using Legendre's notation, the normal elliptic integral of the third kind is de- 
fined by the equation 
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For k2 < 1, the following expansion holds uniformly over the closed interval 

? < o <-2: 
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where (0= 2( > & 2 ?1-form >0, and (2) 1. 

The factor 1 si2in the itgadis bounded for - o < a2 < 1 
1 a2 sin2 itegandsin2 

and 0 < 0 < 4); consequently, the expanded integrand may be integrated term by 
term. Such integration yields the series 
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where 

bm = 
2 

(_i)n ,d 1_ m > 01 

and 

bo = , a _ Qs in20 1 =tan-[T/1 - a2 tan 0], for - 00 < a2 < 1, 

= tan 4, for a2 = 1, 

tanhf[x\/a2 -1 tan 4], for 1 <a <si 2 & 
V\a2 - 1 sn 

In general, the coefficients bm satisfy the recurrence relation 

2(m + l)a2bm+1 = ( 1 )1+1(2m + 1) (2) t2m(G) + (2m + 1)bm, 

where t2m(4) = f sin2"' 6 dO. 

Byrd and Friedman [1] give [formula (902.00)] the recurrence relation 

_2m -1 1 * 2mn-1 
t2m(4)) - 2m t2m-2(4) -2m sin 4) cos 4) 

and explicit expressions for to(4), t2()), and t4(4)). Corresponding to these we find 

b= bo - 4) 
2a2 

b2= 1 [3a2 sin 4 cos ) + 6bo - 3(2 + a2)4] 
16a4 

b3= 12 f6 [2a4 sin34 cos o + a2(3a2 +4) sin 4 cos ) + 8bo - (8 + 4a2 + 3a4)]. 

When == -_ < a2 < 1, and k2 < 1, we deduce the following expansion 

of the complete elliptic integral of the third kind: 

l(a2, k) aH( ,2,k) = cm k 

where 
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57r [ 2 8 + 8 
256a 6 L4 -a- \/1 -a 2i 

and, in general, the coefficients satisfy the recurrence formula 

2(m + 1)a2cm = (m + - 7r 2) + (2m + 1)cm, 

which follows from the recurrence formula for bm when use is made of the definite 
integral 

t2m (2-)s= ,/2 sin2m 1 (m + 2 )r(2) 

=r 1 _ )m 

The expansions obtained above for I| (4, a2 k) and H (a2 k) constitute ex- 
tensions and simplifications of formulas (906.01) and (906.00), respectively, in the 
book already cited, by Byrd and Friedman. Furthermore, the coefficient of a 2 has 
been corrected here in the expression for c3 appearing in (906.00). 
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