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advantageous had the large values of n been arranged conveniently for harmonic 
interpolation, such as n = 60, 120, 240, 480, 960, etc. 
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This paper is concerned with obtaining (3-expectation tolerance regions which are 
minimax and most stringent (see [1] and [2]) for the upper tail of the single ex- 
ponential population and for the central part of the double exponential distribution. 
The single exponential probability density function (pdf) is of the form 
a-l exp [- (x - )/a] with x > ,, where one or both of , and a are unknown. The 
double exponential pdf is of the form (2a) 1 exp (-i x - I/a), where , is known 
and a is unknown. The sample values are xi < ... < x,; X = xi/n; 
S = iZt=2 (xi - xi)/(n - 1); Ao and co represent known values of ,u and a;. 
t= El=, I xi -,o 1. Then the optimum tolerance intervals, which are easily identi- 
fied with the situations considered, are [a(x - Mo), Xo), [xi - bpco', ? ), 

[xi - cPs, X ), and [Mo - dat, /o + d,t]. Tables I-IV contain 6D values of a#, b,s, 
co, dp, respectively, for n = 1(1)20, 40, 60 and ,3 = .75, .90, .95, .99. The power 
of tolerance intervals is expressed in terms of parameter al, where a, is determined 

as the solution of (ac) exp t- (x - A)/ ac dx = = measure of desirability, 

for the single exponential case, and from (2cac)-F exp (-j x- i ao) dx -y for 

the double exponential case. Here I(j3) is the tolerance interval considered and 
O < y < 1 (large values indicate greatest desirability). Tables V, VI, and VIII 
contain 7D values of the power for intervals [a,(x - /Ao), X ), [xi- b,cao -c X ), 

[so - dpt, ,uo + dpt], respectively, for n- = 1(2)7, 10, 15, 30, 60, and j3 = .75, .90, 
.95, .99; likewvise for x1cps and Table VII, except that n = 2(2)10, 15, 30, 60. 
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It is well known that a random sample of size N from a normal universe with 
mean j, and variance 2 yields one-sided tolerance limits (-00, T.) and ( TL, + ??) 
each of which includ-es at least a fraction a of the universe with probability P, where 

Tu= x + ks, 

TL = X- ks, 
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and where, 
n 

x = Ezxi/n, 
i=1 

n 

2= Ej (X- 2/(n-1), 
i=1 

and 

V/nk = t(n - 1, ua/Vn, 1 -P). 

Here t(f, 6, e) [1] is the 100e percentage point of the non-central t distribution with 
f degrees of freedom, 8 is the measure of non-centrality in the definition of t, and ua 
is .the 100(1 - a) percentage point of the unit normal distribution with zero mean. 

By use of the tables (especially Table IV) and iteration of the approximations 
given by Johnson and Welch in [1] the authors obtain values of the coefficient 
Vnck to 4S, for n = 5(1)20(5)50(10) 100(100) 300, for P and a = .90, .95, .99. 
A method for determination of these coefficients is given in [1], but the calculations 
are, of course, quite tedious, so that the present tables render a valuable service 
for practical applications to one-sided tolerance limits. 
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Let q = w/s, where w is a sample range based on n values, and s is an inde- 
pendent estimate of standard deviation based on m values. Then tables of q' have 
been prepared for Pr(q > q') = a, where a = .01, .05, .10, n = 2 (1) 20, and 
m = 1 (1) 20, 24, 30, 40, 60, 120, co. Three significant figures are given throughout. 
The work of Harter [1] has been used in improving the accuracy throughout, par- 
ticularly for a = .01. For a = .01 and .05, these tables correct errors in [2]. 
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Let Si/ni, S2/n2 denote independent covariance matrices arising from samples 
of sizes n1 and n2 from two p-variate normal populations, and U(8' = trace S&21Sl, 
where s is the number of non-zero roots. Two approximations are compared with the 


