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and where, 
n 

x = Ezxi/n, 
i=1 

n 

2= Ej (X- 2/(n-1), 
i=1 

and 

V/nk = t(n - 1, ua/Vn, 1 -P). 

Here t(f, 6, e) [1] is the 100e percentage point of the non-central t distribution with 
f degrees of freedom, 8 is the measure of non-centrality in the definition of t, and ua 
is .the 100(1 - a) percentage point of the unit normal distribution with zero mean. 

By use of the tables (especially Table IV) and iteration of the approximations 
given by Johnson and Welch in [1] the authors obtain values of the coefficient 
Vnck to 4S, for n = 5(1)20(5)50(10) 100(100) 300, for P and a = .90, .95, .99. 
A method for determination of these coefficients is given in [1], but the calculations 
are, of course, quite tedious, so that the present tables render a valuable service 
for practical applications to one-sided tolerance limits. 
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Biometrika, v. 31, 1939, p. 362-389. 

75[K].-J. PACHARES, "Tables of the upper 10 % points of the Studentized range," 
Biometrika, v. 46, 1959, p. 461-466. 

Let q = w/s, where w is a sample range based on n values, and s is an inde- 
pendent estimate of standard deviation based on m values. Then tables of q' have 
been prepared for Pr(q > q') = a, where a = .01, .05, .10, n = 2 (1) 20, and 
m = 1 (1) 20, 24, 30, 40, 60, 120, co. Three significant figures are given throughout. 
The work of Harter [1] has been used in improving the accuracy throughout, par- 
ticularly for a = .01. For a = .01 and .05, these tables correct errors in [2]. 
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76[K1].-K. C. S. PILLAI & PABLO SAMSON, JR., "On Hotelling's generalization of 
T2," Biometrika, v. 46, 1959, P. 160-168. 

Let Si/ni, S2/n2 denote independent covariance matrices arising from samples 
of sizes n1 and n2 from two p-variate normal populations, and U(8' = trace S&21Sl, 
where s is the number of non-zero roots. Two approximations are compared with the 
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exact values for the upper 5 and 1 percentage points of U(2) for several values of 
m = (n, - s - 2)/2 and n = (n2- s - 2)/2. The approximations for the upper 5 
and 1 percentage points of U(3) and U(4) are given to 3 or 4D for m = 0, 5, 
n = 15(5)50, 60(20)100. 
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77[K].-J. G. SAW, "Estimation of the normal population parameters given a singly 
censored sample," Biometrika, v. 46, 1959, p. 150-159. 

As estimators of the mean and variance of a normal distribution, given an 
ordered sample xi < X2 * < xn censored above xr, the author proposes 

r-1 

X= ,r_ + (1 - E)xr, where xr-1 = xi(r- 1), 

r-1 r-1 

* =a (Xi - Xr)2 + d (Xi _ Xr)2, 

respectively, where e is chosen to make ,* unbiased, and a and ,B are chosen to make 
q* unbiased and of minimum variance. To facilitate use of these estimators, three 
tables are appended. Table 1 consists of entries of the weight factor e and Var (,4*/of) 
to lOD for 1 < r < n ? 20. Table 2 contains coefficients of (n + 1) t in series 
approximations to e and to Var (M*kof). Weight factors a and ,B are not tabulated 
directly, and, consequently routine application of the author's estimates may be 
hampered. However, in order to permit calculation of these factors, Table 3, con- 
taining coefficients of (n + 1) i in series approximations to them, has been in- 
cluded. These entries are given to 6D for pr = .50(.05).80, where p, = r/(n + 1). 
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78[K].-MINORU SIOTANI, "The extreme value of the generalized distances of the 
individual points in the multivariate normal sample," Ann. Inst. Statist. Math. 
Tokyo, v. 10, 1959, p. 183-208. 

Let xa' = (xla, ,xpa), a = 1, ,n, be n independent observations from 
a p-variate normal population with mean vector m' = (ml, *, mp) and covari- 
ance matrix A, and let ' = (xl, , xp). The upper 5, 24, and 1 percentage points 
of the extreme deviate 'X'maxD = maxi[(xi - t)'A-l(xi - t)] is given to 2D for 
n = 3(1)10(2)20(5)30, p = 2, 3, 4. When A is unknown, let L be a p X p matrix 
whose elements, lij, are unbiased estimates of Xij, and have a Wishart distribution 
with v degrees of freedom. The upper 5, 21, and 1 percentage points of the Stu- 
dentized extreme deviate Tm axD = maxi [(xi - )'L1 (x -)] is given to 2D for 
n = 3(1)12, 14, v = 20(2)40(5) 60, 100, 150, 200. 
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