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79[L].-L. Fox, Tables of Weber Parabolic Cylinder Functions and Other Functions 
for Large Arguments, National Physical Laboratory Mathematical Tables 
Volume 4, Her Majesty's Stationery Office, London, 1960, iii + 40 p., 28 cm. 
(Paperback) Price 12s. 6d. 

In a previous work [1], to tabulate, for instance, In(x) for large x, it was found 
convenient to write In(x) = (27rx) l12exFn(x) and to tabulate the auxiliary function 
Fn(x) for 1/x = z = 0(0.001)0.05. This device is very economical as compared with 
tabulation as a function of x, and the Fn(x) entries are easily interpolated. Usilng 
the same idea, the present volume gives tables which supplement well-known tables 
of certain transcendental functions as described below. An introduction describes the 
methods of computation. For each table second celntral or modified central differ- 
ences are provided. In some cases modified fourth-order central differences are also 
given. 

Table 1. The exponential integral 

Ei(x) = t-leetdt, -Ei(-x) = t-le-tdt 

Ei(x) = exF(z), z - 

Thus, positive z relates to Ei(x) ; negative z, to Ei( -x). The function F is tabulated 
to 10D for ?z = 0(0.001)0.100. 

Table 2. Sine and cosine integrals 

Si(x) = t1 sin t dt, Ci(x) = t ' cos t dt 

Si(x) = Ir-P cos x-Q sin x, Ci(x) = P sin x-Q cos x 

Values of P, Q are given to 10D for z = x-1 = 0(0.001)0.100. 
Table 3. Airy integrals 
The notation follows Miller [2]. Let z =x 

Ai(x) = r-1/2 x-1/4 e-t R Bi(x) = -1/2x-1/4ets 

A'i(x) = 2 ir-1/2x1/4e-t W B'i(x) = -1/2x1/4etx 

Ai(-x) + jBi(-x) = 7r 12x7114e'0(JP - Q) 

A'i(-x) + jB'i(-x) = 'r 1x2x14e-'(jU - V), j = (41)1I2 0 = t + 7 

The values of R, S, W, X, P, Q, U, V are tabulated to 10D for z = 0(0.001)0.050. 
Table 4. The error integral 

x0 x 

L e`t2 dt = x-le-x2S 1 elt2 dt x-leL 2T 

The values of S and T to 10D are provided for x-2 = z = 0(0.001)0.010. Since 

error functions are often used in the form e', dt, tables based on the latter 

representation should also have been prepared. 
Table 5. Factorial functions 
This is a table of the gamma function, its natural logarithm, and derivatives of 
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the latter. Let 

r (I + x) = (27r) l12e-xxx+1?2f, 

ln { F(l + x)} = ln (27r) + (x + ') ln x-x + g, 

F(k l)(x) = dxk {ln P(l + x)}, F(?)(x) = In x + f2, x1 = z. 

For each table z = 0(0.01)0.10. Tabular value of f, xf2, xF', and x2F" are given to 
lOD; g, to 12D; x3F"' x4F(4) to 9D. 

Table 6. Weber functions 
The notation follows Miller [3]. Let 

W(a, x) = (2k/x)112f cos x, W(a, -x) = (2/kx)112f sin x 

d )12CS d12 
- W(a, x) = -(kx/2)'2g cos a-, - W(a, -x) = -(x/2k)92g sin A, 

dx ' dx~~~~~~~~~~~~~~~~~~~~~~~~~~~-aI x+'P 7,+I -aI 
x= o+42-a1nx+ o2+ 4 4X 2WP-alx+ O2- 7r 

-x1 k = (1+ e27ra)l/2 -e7ra S2 = Im In ir(' + ia)}. 

Values of f, s, g, co to 8D are tabulated for a = -10(1) 10, z = 0(0.005)0.100. 
Values of k and 'o2 are also provided. Table 6A gives 8D values of s02 for 
a = 0(0.05)2.50(0.1)10.0. 

Y.L.L. 
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In the first part of his thesis, the author investigates stability of certain linear 
operators, 

(1) L = p(E) - hr (dr/dxr) o(E) + hr+1 (dr+l/dXr+l) (E), 

associated with numerical integration formulas for sets of differential equations of 
the form 

(2) drl/dXr = f(x, y), 

where y and f are s-dimensional vectors, p(r), a(r), and r(r) are polynomials of 
degree k with real coefficients, and E is the displacement operator defined by 
Eu(x) = u(x + h), for any function u(x). The number k is called the order of L. 


