
The Fairing of Ship Lines on a High-Speed 
Computer 

By Feodor Theilheimer and William Starkweather 

Abstract. Methods for using a digital high-speed computer to determine ship lines 
are presented. It is assumed that the offsets of a small number of points were taken 
from a preliminary design, and that it is desired to compute the offsets of an arbi- 
trarily large number of points on the ship's surface. Procedures for using a computer 
for the solution of this problem are described. Special emphasis is placed on the 
detection, by a computational criterion, of unwanted fluctuations and the correc- 
tion of such fluctuations-if they should occur. The method also includes a special 
procedure which takes care that those portions which are straight in the preliminary 
design remain straight in the final form. Illustrative examples of the methods are 
discussed. 

1. Introduction. Before the actual construction of a ship can begin, considerable 
time and effort has to be spent in the drawing of the ship lines. The purely graphical 
methods of determining ship lines are very tedious and time-consuming. Therefore, 
the problem of implementing the graphical methods by analytic procedures has 
been studied for a considerable time. 

One of the most important earlier contributions is due to Admiral David W. 
Taylor [1]. An extensive history and bibliography of the problem is given in Volume 
II. of "Hydrodynamics in Ship Design," by Captain Harold E. Saunders [2]. 
Among the more recent publications are papers by W. H. Rdsingh and J. Berghius 
[3], P. C. Pien [4], and J. E. Kerwin [5]. 

The analytical approach to the ship line problem has become particularly at- 
tractive since high-speed computers became available. This offers an opportunity 
to eliminate much of the drudgery inherent in the graphical method. 

When ship lines are found by an analytic method, they may possess unwanted 
fluctuations. It is, therefore, desirable to have an analytic criterion which permits 
us to determine whether or not a line is free of unwanted fluctuations. This paper 
furnishes such a criterion and gives a method of finding lines without such fluctua- 
tions. 

In Section 2 a method, which essentially amounts to an interpolation, is de- 
veloped for finding a ship surface which passes exactly through a set of points 
given in a preliminary design. 

In Section 3 this method is modified to a smoothing procedure which yields 
ship lines that are free of unwanted fluctuations but which may no longer pass 
exactly through the given points. 

Section 4 deals with the special case where the preliminary design contains 
straight line portions, and a method which reproduces these lines as straight lines 
is developed. 
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FIG. 1.-The Coordinate Axes 

Section 5 describes applications of the various procedures for finding ship lines 
by a high-speed computer. 

2. Interpolation Method. The coordinate system is taken as indicated in Figure 1; 
the x-axis is longitudinal, the z-axis is vertical, and the y-axis is perpendicular to 
both the x- and z-axes. 

The determination of ship lines by analytic methods is considered equivalent to 
finding a function of two variables 

(1) y = F(x, z) 

so that for every fixed value of z we have y as a function of x along a waterline, 
which permits us to compute an arbitrarily large number of half-breadths on that 
waterline. Likewise, a fixed value of x would yield an arbitrarily large number of 
half-breadths along a section. 

We assume that the ship for which we are to determine y = F(x, z) is described 
to us by a table of offsets taken from a preliminary design. 

Let the offsets be given at N + 1 points on each of K + 1 waterlines. Then 
we will develop a procedure which yields y = F(x, z) and thus gives an arbitrarily 
large number of offsets instead of the given (N + 1) (K + 1) points. The existing 
program for the computing machine is set up for handling cases where N and K 
can be as large as 24, but, in the cases actually treated, N and, particularly, K 
were much smaller. 

To find a function y = F(x, z) we first determine a function y = f (x) which 
corresponds to a single waterline. The finding of such a function y = f(x) will 
turn out to be an essential part of the determination of the surface y = F(x, z). 

We assume that the entire waterline is divided into N, not necessarily equal, 
intervals and that the N + 1 points (x0, yo), ... , (XN YN) are given. We now 
consider the problem of finding a curve which passes exactly through these points. 
This interpolation problem can be attacked only after we make a choice as to the 
type of curve that should represent a waterline. 

We shall insist that the function be continuous and have continuous slope and 
curvature or, what amounts to the same, have continuous first and second deriva- 
tives. 

A simple type of curve that satisfies these conditions is the following: 
Let the curve consist of a number of segments, each segment being represented 

by a cubic. These cubics are joined in such a way that at the juncture points the 
function, its first derivative, and its second derivative are continuous. 

Curves of this type arise in the theory of small deflections of thin beams which 
are simply supported at a finite number of points. To some extent a batten or 
spline held in place by so-called ducks, as it is used in the drawing of ship lines, 
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can be approximated by a thin beam simply supported at a finite number of points. 
The analogy between a spline and a thin beam gave rise to the name "spline curve" 
for the type of curve consisting of cubic segments described here. 

We have chosen spline curves to represent ship lines. The explicit formula for 
a spline curve is greatly simplified if we introduce the following notation: 

(x - a) + = O for x ? a 
(2)(x )3O_ 

= (x-a)3 forx > a. 

Equation (2) can also be written in the form: 

(3) (x - a)+3 = [(X - a)3 + -a 1 3]. 

With the aid of this notation, a spline curve which has discontinuities of the 
third derivative at the points x1, ,XN-1 can be written as 

f(x) = y = a + bx + cx2 + A O3 

+ Ai(x - xl) ++ + AN-1(X XN-1) + 

It is clear that each new term 

A,(X -(XX)+3 n = 1, ,N-1 

introduces a discontinuity of the third derivative at x = x,, the magnitude of the 
jump in the third derivative being equal to 6A , whereas the continuity of the 
function, its first derivative, and its second derivative remain undisturbed. 

In each of the N intervals 

x,,n < X < X. n = 1, 2, , N 

formula (4) sums to a single cubic. In individual cases any of the four terms of such 
a cubic may drop out in the summation, and, in particular, it is possible that the 
cubic may reduce to a straight line. This shows that the spline curve lends itself 
to the representation of curves which contain straight portions as, for instance, 
waterlines on ships with parallel middlebody. 

We shall now develop a procedure for determining the coefficients of a spline 
curve which passes exactly through the N + 1 points 

(xo Yo) X (x1 , yi), ... , (XN , YN)- 

We choose as points of discontinuity of the third derivative the N - 1 inner 
points 

(X1 , Y. X** (XN-1 , YN-1) 

of the given set of points. The spline curve then appears in the form of equation (4) 
which has N + 3 coefficients. For the determination of these coefficients we have 
N + 1 equations; namely, the conditions that the curve should pass through the 
N + 1 given points, yn = f(xn) for n = 0, 1, , N, which means that we have 
two more unknowns than equations. 

To get a clearer picture of the role of these two degrees of freedom, we rewrite 
f(x) of equation (4) in the form 

(5) f(X) = fo(x) + pfi(X) + qf2(X) 
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where fo , , , and f2 are to satisfy the following conditions: 

f0(xn) =y fi(x.) = O f2(x.) = 0, n = 0. 1 N 

(6) fo'(xo) -0 fi'(x0) = 1 f2'(xO) = 0 

fo''(x=) 0 f1"(xo) = 0 f2'"(xo) = 2. 

Each one of the functions fo , f, , f2 is now determined by N + 3 conditions. The 
requirements at xo are clearly satisfied if we write: 

fo(x) Yo + Bo(x - xo)3 

+ B1 (x - xi) +3 + * + BN-1 (X - XN-1 ) + 

f1(X) x - Xo + Co(X - Xo)3 

+ C1(X - X1)+ + *3 * + CN-1( X XN-1) + 

f2(X) = (x - XO)2 + Do(x - Xo)3 

+ D1(x -_xl)+3 + + DN-1(x -XN-1)?. 

The B.,7 C.l, and Dn , n = 0,.* , N -1, can be found by utilizing the equa- 
tionsfo(xXn) = yn , fA(xn) = 0, f2(xXn) = 0, n = 1, , N. To find these coefficients 
one has three systems each of N equations in N unknowns, which are obtained by 
substituting the values of x1, X2, **. , XN in place of x in the three equations of 
(7), and by utilizing the first line of equation (6). The coefficients Bn,,, Cn,,, and 
Dn can be found without solving the systems of equations in the usual manner. 
Substituting x = x1 immediately yields Bo , Co , and Do, and if we put x = xn , we 
find Bn in terms of Bo, B1, - **, B,,-, and similarly, Cn and Dn in terms of the 
preceding C's and D's, respectively. 

After the functions fo , fi, and f2 are thus determined, the parameters p and q 
of equation (5) must be found. Among the curves 

Y = fo + pfi + qf2 

which all pass through the N + 1 points (xo , Yo), , (XN , YN), we have to choose 
one which is by some criterion most desirable. 

Between two spline curves, we will consider as more desirable the one which 
has smaller jumps of the third derivative, or more precisely, the one where the 
sum of the squares of the jumps of the third derivative is less. Going back to thin 
beam theory, we note that the reaction force at a point of support is proportional 
to the jump in the third derivative. The desired spline curve is, therefore, the one 
for which 

N-1 

(8) E (An,)2 n =1 

becomes a minimum, since 6An is the jump in the third derivative at Xn for the 
function f(x) of equation (4). 

From equations (5) and (7) we see that 

(9) An = Bn + pC, + qDn 
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and therefore 
N-1 

(10) x: (B. + pC. + qD.)2 
n-1 

has to become a minimum. 
This leads to the following two linear equations in p and q 

pTCn2 + qWCnDn = - TBnCn 

pZ2CnDnD + q2Dn2 = - 2BnDn 

where we always sum in n from 1 to N - 1. 
By this method a spline curve which passes through N + 1 given points is 

found in the form: 
N-1 

(12) f(x) = Yo + p(x - x0) + q(x - xo)2 + Ao(x - xo)3 + Z An(x - Xn)+3. n=l1 

By expanding the powers of (x - x0), this can be brought into the form 
N-1 

(4) f(x) = a + bx + cx2 + AoX3 + Z An(x -x")+3. 
n=1 

We have thus developed a procedure for finding a spline curve which represents a 
waterline that passes through N + 1 given points. If we are given N + 1 points 
on K + 1 waterlines, we can therefore find K + 1 functions, fk(x), k = 0, . , K, 
expressing the K + 1 waterlines. Our next step will then be to find y = F(x, z) 
so that 

(13) F(x, Zk) = fk(X) 

where Zk is the z coordinate of the kth waterline. 
Each one of the functions fk(x) appears in the form of f(x) as given in equation 

(4) where the coefficients a, b, c, AO, A1, ... , AN-, are generally different for each 
fk(x). Each one of these coefficients, say for example, a is now given for z = zo, 
Z = Z1, *. *, Z = ZK * We can therefore ask for a function a(z) for which we are 
given values at z0, z1, , ZK. This is exactly the same problem that confronted 
us when we were given N + 1 points on a waterline and found f(x). 

By using the same procedure which gave us f(x) we can now find a(z) as a spline 
function of z. In the same manner b(z), c(z), AO(z), , AN-1(Z) can be found. 
This gives the expression for the whole surface 

F(x, z) = a(z) + b(z) x + c(z) .x2 + AO(z) .x3 
(14) 

+ Ai(z) (x - x1)+' + + AN1(Z) -(X XNl1)+3 

Each one of the N + 3 coefficient functions a(z), b(z), c(z), A0(z), A1(z), 
AN-1(Z) is itself a sum of K + 3 terms. 

In this derivation we worked under the assumption that the abscissas xn, 

n = 1, ... , N - 1 do not change from waterline to waterline. In general, we 
assume that the data given originally will satisfy this requirement. However, we 
permit x0 and XN , which do not appear explicitly in the formula for the spline curve, 



FAIRING OF SHIP LINES ON A HIGH-SPEED COMPUTER 343 

to vary from waterline to waterline. This is very advantageous since, in general, 
waterlines on different levels do not have the same x0 and XN . 

In order to apply our procedure as it stands, it is necessary that x1, , XN-1 

do not change from waterline to waterline. However, a simple modification of our 
procedure will permit us to handle the case where some waterlines do not conform 
to this restriction. 

If some waterlines have offsets given at xo, xl, ... , XN, whereas one waterline 
has offsets given at xo*, xi*, , XN then we can find a function which expresses 
this waterline in a form analogous to equation (13) by means of a function 

f(x) = a + bx + cx2 + Aox3 + Ai(x - xi*)+3 + - + ANl1(X - X1)+3. 

From this function we can find f(xi), f(X2), * * *, f(XN-1) which can serve as ordi- 
nates of modified data which go with the abscissas xl, , XN-1 . Such a modifi- 
cation can also be used if one line contains fewer points than the other lines. 

The derivation of F(x, z) described here shows immediately that the originally 
given points on each waterline do not have to have equidistant abscissas nor do the 
waterlines have to be equally spared. 

A program to compute the coefficients of the function y = F(x, z) was coded for 
the Remington Rand high-speed computer UNIVAC. Further computer programs 
were then developed to evaluate this function and to print out in tabular form the 
offsets along any portion of any waterline if z is given and the first desired value of 
x, an increment of x, and the number of x values desired are entered into the ma- 
chine. In similar fashion, any portion of any transverse section can be tabulated. 

These various machine programs were later recoded for the IBM 704 computing 
system. 

It is clear that the determination of the coefficients for the function y = F(x, z) 
constitutes the main computing effort. The evaluation of the function and the 
printing of the results for any number of points requires very little extra time. 

3. Smoothing Method. The procedure described thus far usually gives very satis- 
factory results, but in some cases it turned out that the computed ship lines showed 
unwanted fluctuations which could be recognized by plotting the lines. There 
arises a need for a criterion which will permit the computer to determine whether 
or not a line is free of such unwanted fluctuations. 

Clearly, a curve that has no inflection points would be free of all fluctuations. 
We cannot require, however, that ship lines have no inflection points, because 
there are well-designed ship lines that do have inflection points. What we want to 
avoid are extraneous inflection points. We therefore have to determine where the 
given data indicate the presence or absence of an inflection point. 

This can be done by studying three successive points Pn,1 , P, , Pn+? with the 

coordinates (x_1 , Yn-1), (X. , Yn), (x.+1 , Yn+) . If the three points are plotted and 

Pn-i and Pn+? are joined by a straight line, it can readily be seen whether the curve 
in the vicinity of Pn is concave upward or downward. This graphical method can be 
easily translated into analytical form by introducing the second difference, which 
here shall be called rn . 

Then the sign of the second difference will indicate whether the curve is to be 



344 FEODOR THEILHEIMER AND WILLIAM STARKWEATHER 

concave upward or downward at Pa,. A positive second difference indicates con- 
cave upward, a negative second difference indicates concave downward. 

The formula for the second difference becomes particularly simple in the case 
of equally spaced abscissas: 

(X, - X.) = (x, - x,1) = h. 

Then the second difference becomes 

( 1 5r) = Yn+1 2Yn + Yn-1 rn - 
~~h2 

In the case where the abscissas are not equally spaced, formula (15) is to be re- 
placed by the general formula 

(16) rn= 2 
(Yn+i Yn _n YnI/ 

Xn+1 - Xn-1 n+1 - n Xn - Xn-1 
If we are given the N + 1 points 

(X0, yo), (XN, YN) 

we can readily determine N - 1 second differences 

ri, ..., rN_1 . 

If rn and r,+1 have the same sign, we can consider this an indication that there 
should not be an inflection point between Xn and xn+1 . If they have different signs, 
the given data suggest an inflection point between Xn and xn+1. We are now in a 
position to determine whether or not a curve y = f(x) has unwanted fluctuations. 
Only if the second derivative f" (xn) and the second difference r" have the same 
sign can we be sure that the curve y = f(x) is free of unwanted fluctuations. 

Here it is understood that a function whose second derivatives at xn and x,+1 
have the same sign has no inflection points between Xn and xi+ . This, however, 
will not be true for every function; for instance, it will not be true for a polynomial 
of degree higher than three. Such a function can have an even number of inflection 
points between two successive points at which the second derivatives have equal 
signs. However, if we deal with spline curves, Xn and xn+1 are joined by a cubic, 
which can possess not more than one single inflection point. By the same reasoning, 
we find that if in the case of a spline curve, f" (xn) and f" (xn+) have different signs, 
there will be precisely one inflection point in the interval Xn to xn+1, and not an 
arbitrary odd number as it might be for the general curve. 

For illustration, we have discussed the comparison of the second differences of 
the data with the second derivatives of the computed curve only in the case where 
the curve has been a waterline, and we have, therefore, been finding a function of x. 
Exactly the same test can, of course, be carried out when we are finding a function 
of z. 

The test of whether or not a given curve has unwanted fluctuations can be 
carried out very easily by the computing machine for either waterlines or sections, 
and the program can be written so that the computing machine prepares a listing 
of the points where the curve fails the test. It may occasionally happen that the 
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discrepancies are of a trivial nature, but if they are not, a method must be devised 
to compute new lines which are free of unwanted fluctuations. 

In trying to free ourselves from unwanted fluctuations we think of a smoothing 
procedure which relaxes the requirement that the computed curve should pass 
exactly through the given points. 

The method of least squares immediately suggests itself. If, however, a least- 
squares method is applied, one finds that in comparatively simple cases one is led 
to unwanted fluctuations. The fact that a least-squares fit may yield fluctuations 
can be ascribed to the following consideration. 

A least-squares fit minimizes the sum of the squares of the differences between 
the given and computed values but imposes no constraint to minimize fluctuations. 
If we want to free ourselves of fluctuations, we have to take care that the second 
difference and the second derivative have the same sign in each case. This can be 
attempted by minimizing the sum of the squares of the discrepancies between the 
second differences and the second derivatives. 

Such a minimization is essentially implicit in the interpolation procedure de- 
scribed by equations (4) through (10). There we minimize (An)2. It can be shown 
that 

(17) An = 1 [r, -f"'(xn)] 

in the case where the abscissas are equally spaced with the spacing h. 
Let xn be a point where the third derivative of a spline curve undergoes a jump 

(18) 6A. = f"'(Xna+) - f'(Xn-) 

then 

(19) ~~~~~~~~~2 h3 
(19) f(xn + h) = f(xn) + hf'(xn) + 2-f"( x n) +6 .f"'(Xn+) 

(20) f(xn - h) = f(x.) - hf'(x.) + 2h (Xn) - 6 f"3(Xn-) 

If we add equations (19) and (20) and utilize equations (15) and (18), we 
get equation (17). 

Therefore, when we used the interpolation method described by equations (4) 
through (10), we found among all possible spline curves passing exactly through 
the N + 1 given points the one for which, in the case of equally spaced points, the 
discrepancies between the second differences and the second derivatives were least. 

Even if we minimize the discrepancies between the second differences and the 
second derivatives but insist that the curve pass exactly through the given points, 
we will often get unwanted fluctuations. To free ourselves from these fluctuations, 
we have to relax the requirement that the computed curve pass exactly through the 
given points. 

If we no longer insist that the curve pass exactly through the given points, we 
do not require that f(xn) be equal to Yn , but we still want to make 

N 

Z [f(x.) - y.12 n=n 
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small. To avoid extraneous fluctuations we also want to make Zn=1 if" (xn) -- 
small. We therefore minimize a linear combination of the two sums; namely, 

N N-1 

(21) E [f(X) - 2 ? sZ [f" (Xn) - rn ]2. 
n=O n=1 

The use of the parameter s enables us to emphasize either the first or the second 
sum. By choosing s small we put more stress on minimizing the first sum, which 
makes the curve pass more closely to the given points. By choosing s large we put 
more stress on minimizing the second sum, which makes the discrepancy between 
the second derivative and the second difference small. This tends to make them 
agree in sign, and thus tends to eliminate unwanted fluctuations. 

If we study the case of s = 0 we minimize only the first sum. This sum has a 
zero minimum, since each summand can be made zero individually by solving the 
N + 1 linearly independent equations, f(xn) = yn , n = 0, 1, . , N, for the 
N + 3 unknown coefficients, a, b, c, AO, . , AN-1. Therefore s = 0 leads to a 
curve passing exactly through the given points. This curve, however, would not be 
uniquely determined but would depend on two parameters just as in equation (5). 

A similar situation would prevail if we were to minimize only the second sum in 
formula (21), which would be equivalent to letting s become infinite. Then we would 
also get a zero minimum, and we would achieve perfect agreement between the 
second derivatives and the second differences. For sufficiently large s we can there- 
fore make the second sum as small as we please and obtain agreement in sign be- 
tween second derivatives and second differences. 

Thus we have found a method for computing a curve which is suggested by 
N + 1 points. We first minimize expression (21) with a small s and then test to 
see if there are any unwanted fluctuations. If there are some, we increase s until 
the curve is satisfactory. When all waterlines have been fitted with satisfactory 
curves, we can then fit like coefficients into functions of z by utilizing formula (21) 
again, and thereby find the expression for the ship's surface y = F(x, z). 

Although one may choose different s values for different lines and even for dif- 
ferent points on a given line, most of the work has been done primarily by using 
the same value of s throughout for any given run on the computer. 

4. Lines With Straight Portions. One of the reasons for choosing spline curves as 
typical ship lines was the fact that ship lines often contain straight portions. A 
polynomial or any other analytic function cannot contain straight as well as curved 
portions. Although spline curves can contain straight portions as well as curved 
ones, the methods developed thus far do not contain any special provisions which 
will ensure that straight portions will be reproduced as straight portions. 

It is felt that every effort should be made to reproduce exactly those portions 
of the preliminary design which are clearly intended to be straight. 

First, we will treat the case where the straight portion is at the beginning of 
the line. 

Suppose that of the N + 1 points 

(XnYn), n = 0 N 

the first L + 1 points lie on a straight line of slope a. 
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Then 

(22) Yn = yo + a (xn-o) for n = O * *,L 

and the desired function can be written 
N-1 

(23) f(x) = yo + a(x - xo) + E An (x - x)3. 
n-L 

The N - L unknown coefficients An n = L, ** , N -1 could be found by 
solving the N - L equations: 

f(XL+l) = YL+1 = yo + a(xh+1 - xo) + AL(XL+l - XL) 

f(XL+2) = YL+2 = yo + a(XL+2 - X0) 

+ AL(XL+2 - XL) + AL+1(XL+2 - XL+1) 

(24) 

f(XN) = YN = yo + a(XN - Xo) + AL(XN XL) 

+ AL+1(XN - XL+1) + + AN-(XN - XN-1). 

After having done this we would have to apply the previously derived criterion 
to find out whether or not there were any fluctuations. If there were unwanted fluc- 
tuations, we would then minimize the expression 

N N-1 

(25) Z [f(xn) - yfn]2 + s Ad [f"(xn) rn]2 
n=L+l n_=L+ 

As before, a sufficiently large s will ensure that the sign of the second derivative 
f" (xv) of the computed curve will agree with the sign of the second difference rn of 
the given data at each xv . 

If a ship line consists of a curved part followed by a straight part of slope b; 
that is, if, of the N + 1 points, 

(Xn, Yin), n = 0, ... , N 

the last L + 1 points lie on a straight line, then 

(26) Yn = YN b(XN Xn) 

for n = NN-1, , N-L. 
The expression for the ship line is then 

(27) f(x) = YN - b(XN - X) + An* (Xn - X) + 
n =N-L 

where (Xn - X)+3 = 0 for (x. - x) < 0. 
The An* can be determined by a procedure analogous to the one used in equa- 

tions (24) or (25). The expression for a line thus determined will contain terms of 
the form A,,*(xn - x)+3, whereas we usually write lines with terms of the form 
A (X - Xn) +3 

The two forms are related to each other in the following way 

(28) (x - Xn)? 3 - (Xn - X) +3 = (X -n )3. 
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That this is a valid relationship becomes evident when we realize that for x less 
than x, , the first term on the left-hand side of equation (28) becomes zero, whereas 
the second term vanishes for x greater than x, . 

Therefore, equation (27) can be modified in the following way: 

f(X) = YN - b(XN - X) + Z An*(x. - x)+? 

(29) - F - b~r1~.~ 1 N-L - ~)~.n=N-L Z A)(1 - + 
= ?N- b (XN -X) - ,# An*(X - XnF)3 + Ad A n * (X- Xn,)+ 

n=N-L n=N-L 

The terms inside the brackets can be arranged as a single cubic. 
We have thus far treated the cases where a straight portion is followed by a 

curved portion and where a curved portion is followed by a straight portion. There 
is one more possibility; namely, that a line has a straight portion followed by a 
curved portion followed by a straight portion. If there are one or possibly more 
straight portions in the interior of a line, then we can subdivide each of the inner 
straight portions and treat the thus achieved cases individually. 

The case of a curved portion between two straight portions leads to the problem 
of finding a spline curve for which the ordinates, the slopes, and the second deriva- 
tives of the two end points are given. In particular, the second derivatives are 
zero. Since six conditions are imposed, the spline curve must have at least six 
coefficients, which means that it must consist of at least three cubic arcs. 

We first consider the case where there are two points given between the end 
points of the straight portions. Let XL be the abscissa of the end point of one of the 
straight lines and XI,+:> be the initial abscissa of the next straight line. 

If 

f(XL) = A f(XL+3) = B 

(30) f'(XL) = a f'(XL+3) = b 

f (XL) = 0 f (XL+3) = 0 

then 
L+3 

(31) f(x) = A + a(x - XL) + E An(x -Xn)+3 n =L 

which immediately satisfies the conditions at XL . 

The conditions at XL+3 yield three linear equations in the three unknowns AL, 

AL+1 , and AL+2 . The determinant of this system is recognized to be different from 
zero because it contains three rows which are the first, second, and third powers of 
(XL+3 -xn), n = L, L + 1, L + 2. 

The coefficient AL+3 is determined by the requirement that for x > XL+3 the 
curve should be a straight line; namely, f(x) = B + b(x - XL+3). 

The solution of this problem can be given explicitly for the case of equidistant 
abscissas xLj, XL + h, XL + 2h, XL + 3h. To simplify the necessary formulas, we 
look at it as a combination of three elementary cases. 

In the first case, if f(xL) = A and f(XL + 3h) = B and f'(XL) = f"(XL) = 
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f'(XL + 3h) = f"(XL + 3h) = 0, then by solving equation- (30) adapted for this 
case, 

f(x) =A + [(x-X L)+3-3(x-XL-h)?3 (32) 6h3 
+ 3 (x - XL - 2h) + - (x - XL - 3h) +]. 

In the second case, if 

f(XL) = f(XL + 3h) = f"(XL) = f'(XL + 3h) = f"(XL + 3h) = 0, 

but f'(XL) = a, then 

= (x) a(x- XL) + a2 [-2(x - XL)+? + 5(x - XL - h)+3 (33) f~) - 6h2 

- 4(x - XL - 2h)+3 + (x - XL - 3h)+3]. 

In the third case, if f(XL) = f(XL + 3h) = f'(XL) = f"(XL) = f"(XL + 3h) = 0, 
but f'(XL + 3h) = b, then 

(34) f(x) = 6h2 [-(x -XL)+3 + 4(x - XL - h)+3 

- 5(X - XL - 2h)+ + 2(x - XL - 3h) +]. 

If f(XL) = A, f(XL + 3h) = B, f'(XL) = a, f'(XL + 3h) = b, f"(xL) = 

f" (XL + 3h) = 0, then f(x) can be written as the sum of the three expressions 
(32), (33), and (34). 

It is to be observed that for both the equidistant and the nonequidistant solu- 
tions of equations (30), the curved part is completely defined by the slopes and 
the end points of the given straight portions. The magnitudes of the ordinates at 
XL+1 and XL+2 do not enter into the computation; therefore, if fewer than two 
points are given in the gap between the end points of the two straight portions this 
method can also be applied. All that is necessary is to choose additional abscissas 
in the gap without fixing their ordinates. 

A different situation prevails if the curved part between the two straight portions 
has more than two given points. Let the first straight line end at XL SO that 

(35) f(XL) 
= A, f '(XL) = a, f" (XL) = 0 

and the next straight portion begin at XM so that 

(36) f(xM) = B, f '(XM) = b, f (XM) = 0 

where M - L > 3. 
We can immediately give one such spline curve which satisfies at least all con- 

tinuity requirements at its junctures with the two straight portions. This can be 
done by extending the first straight line until only three intervals have to be bridged 
by the curve. The following relations will have to be satisfied: 

fO(XM-3) = A + a(xM-3 - XL) fo(XM) = B 

(37) fo'(XM_3) = a fo'(XM) = b 

O' (XM_ 9) 
= O fO (XM) = O. 
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The conditions at XM-3 are immediately satisfied when we write 

fo(X) = A + a(x - XL) + AM-3(X - XM_3) + + AM-2(X XM-2)+ 

(38) 
+ A M-1(X - XM-1) + + AM(X XM).+. 

The coefficients AM-3, A M-2, A M-1 follow from the conditions at x M whereas A M 

is a result of the requirement that the line should be straight for x > XM. 

Although such a spline curve satisfies the continuity requirements at XL and 
XM , in general, it cannot be expected to pass closely enough to the interior points 
(XL+1 YL+1), (XL+2, YL+2), ... , (xm-1 I YM-1), nor is there any assurance that the 
curve will be free of fluctuations. 

The particular solution of the problem of finding a spline curve for which equa- 
tions (35) and (36) hold can be expanded into a general solution if we add linear 
combinations of spline curves which satisfy the conditions 

(39) f(XL) = f'(XL) = f"(XL) = f(XM) = f'(XM) = f"(XM) = 0. 

The general solution satisfying (39) is of the form 
M 

(40) f(x) = Ad A,(x -x,)+3. 
n=L 

The first three conditions of equations (39) are automatically satisfied. The last 
three conditions of equations (39) lead to three equations in AL, AL+1 - , 

AM-1, whereas AM is determined from the requirement that the spline curve be 
straight for x > XM - 

The three equations in AL, * , A M-1 have coefficients which form a matrix of 
rank three, since it contains three rows which are, respectively, the third, second, 
and first powers of 

(X M- X.) for n = Li L+ 1, ** ,M- 

Since the difference between the number of unknowns and the rank of a linear 
equation system gives the number of linearly independent solutions, we will have 
here M - L - 3 linearly independent solutions. 

One way of finding a special set of such independent solutions is to determine 
M - L -- 3 functions which satisfy the conditions 

(41) fk(X) = 0 for XL ?X _? XL+k-1 

and for XL+k+3 _ X ? XM 

and which in the interval XL+k-1 < X < XL+k+3 is controlled by the conditions 

fk'(XL+k-1) = 0 fk'(XL+k+3) = 0 

(42) 
'k (XL+k-1) = 0 kA'(XL+k+3) = 0 

for k = 1, 2 M-L-3. 
These equations (41) and (42) are a case of equations (39) if we replace L 

by L + k - 1 and M by L + k + 3, and thus, M - L becomes 4. Therefore, 
for every value of k = 1, 2, ,M -r L - 3, we get exactly one independent 
solution, A (X). 
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Since along with fk(x) any multiple of fk(x) is a solution of these equations. wve 
normalize by requiring that 

(43) fk(XL+k) = 1. 

These functions fk(x) are then shown to be linearly independent in the following 
way. 

If there were to exist a relation 

M -L-3 

Z Vk fk (x) = 0 
k=1 

then substituting x = XL+1 would yield V1 = 0, and, successively, all V7k could be 
shown to be zero. 

The general solution of equations (35) and (36) is then found by adding to (37) 
the general solution of (39), or what amounts to the same, a linear combination 
of solutions of (41) and (42). 

We thus obtain 

M-L-3 

(44) f(x) = fo(X) + Z Pk fk(X). k=1 

The coefficients Pk are to be determined in such a way that 

M-1 M-1 

(45) E [f(x.) - yn]2 + s E_ [f"(x.) - r,,] 
n=L+1 n=L+1 

becomes a minimum. 
The larger the value of s the more emphasis is placed on the agreement of the 

second derivative f" (x1n) of the curve with the second differences rn of the given 
data. It is to be observed that in this case we have M - L - 3 coefficients, and 
we want to have agreement between the second derivatives and the second dif- 
ferences at M - L - 1 points, so that no matter how large an s is taken we can 
only minimize the discrepancies but cannot force the discrepancies to zero. In 
most cases we will easily achieve agreement of sign between the second derivatives 
and the second differences with a suitable value of s. 

Should a case arise where it cannot be achieved, we can take recourse to the 
following procedure. Agreement in sign between the second derivative and second 
difference can be forced if we permit some of the quantities to vary that have been 
held constant previously. Such quantities are, for instance, the constants which 
characterize the straight portions; namely, the quantities a, A, b, B, of equations 
(35) and (36). 

It may be of interest to note that in the case of equidistant abscissas x,,, the 
solution of equations (41) and (42) can be given explicitly in comparatively 
simple form. 

If XL+ = XL + kh, then a simple verification shows that 

g(x) = (x - XL)3 - 4(x - XL - h) + + 6(x - XL - 2h)+ 
(46) 

- 4(x - XL - 3h)+3 + (x - XL -4h)+ 
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can be taken as fi(x), and all the fk(x) are found by the formula 

(47) fk(X) = g[x- (k - 1)h]. 

Thus, we have developed a procedure for finding spline curves into which we in- 
corporate straight portions. The methods described apply to abscissas that are not 
necessarily equally spaced, but they simplify considerably in the case of equi- 
distant abscissas. 

5. Applications. The various procedures described so far were applied to both 
realistic and artificially created data. We now want to describe in some detail two 
particular problems which were solved on the IBM 704. 

In the first case, a set of faired lines for DD 948-949 were available. A small 
number of offsets were selected as the basis of a problem. We applied our method 
to them as if they were taken as part of a preliminary design, and reconstructed 
from them a large number of points in order to compare them with the correspond- 
ing faired data. 

In particular, eighteen points on each of five waterlines were chosen. The chosen 
waterlines were 2 ft, 4 ft, 6 ft, 10 ft, and 141 ft. The point (xo, yo) on each water- 
line was the tabulated initial point of that line so that xo was not the same for all 
waterlines. The other abscissas x1, * *, x17 were chosen so that x. = 20 n ft. 

With these 90 given points, the coefficients of the function representing the ma- 
jor part of the ship's underwater surface were determined by the method of Sec- 
tion 3. 

This permitted us to compute any number of offsets and, in particular, we were 
able to tabulate the offsets at 2-ft spacing on each of the input waterlines and also 
on the 8-ft and 12-ft waterlines. 

These computed offsets were then compared with the given faired offsets and 
the discrepancies were found to be no greater than '-in. at any point. 

This example, used as a practice case, was based on input points which were 
already well faired; therefore, a small value of s, namely, s 1, in formula (21) 
gave no fluctuations. Also, when the interpolation method described in Section 2 
was applied to the same data no fluctuations appeared. 

A practical application of the methods described here was made in the solution 
of a problem proposed by the New York Naval Shipyard. 

It was requested that faired ship lines for LPD 1 be computed. A preliminary 
design was given, including a table which contained the offsets on each of 11 water- 
lines for stations that were generally 25 ft apart. The problem was to compute the 
offsets for each frame at 2-ft spacing. 

A study of the preliminary design of the ship showed a feature which required 
some extension of the method described previously. Thus far we have considered 
only ships whose lines have continuous slope and curvature at every point. This 
ship, the LPD 1, has a horizontal knuckle 22 ft above the keel extending from the 
midsection to the after perpendicular. At this knuckle the section lines have a dis- 
continuity of the first derivative. 

The waterlines can be handled here in the same way as previously described. 
If we were to continue as in the case where there is no knuckle and form a surface 
y = F(x, z), we would be led either to violent fluctuations or, if s in formula (21) 
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TABLE 1 

Waterline Half-Breadths Furnished by New York Naval Shipyard for 
LPD I 

(From Station 18, x = 450 ft, to Aft Perpendicular, x = 500 ft; 
Station Spacing 25 ft. Dimensions in ft-in.-8ths) 

Station 22-Ft W.L. 28-Ft W.L. 36-Ft W.L. 44-Ft W.L. 

18 35- 1-4 35-11-4 37-0-6 38-2-0 
19 31-11-4 32-11-6 34-4-2 35-9-0 
AP 28- 4-0 29- 7-0 31-3-4 33-0-0 

were chosen sufficiently large, the knuckle would be completely faired out, which 
is not what was desired. 

We can avoid this difficulty by subdividing the coefficients of the various water- 
lines into two groups: those that go with the fore part of the ship where there is no 
knuckle, and those that go with the aft part of the ship where there is a knuckle. 
The fore part is treated in the usual manner. In the aft part, we fit the coefficients 
of the waterlines above the knuckle separately and also the coefficients of the water- 
lines below the knuckle separately. 

In the actual computation, formula (21) was used with s = 1, which gave satis- 
factory results. The result of the computation was printed by the high-speed 
printer associated with the computing machine. It was arranged in the form of 
tables giving offsets on every frame. The frames were spaced 2 ft apart, and on 
each frame the offsets were given for every waterline level 2 ft apart. 

As an illustration, a small part of the input data furnished by the New York 
Naval Shipyard is presented in Table 1, and the corresponding output computed 
by the IBM 704 is given in Table 2. 

Table 1 contains the portions above the knuckle of Stations 18, 19, and the After 
Perpendicular. 

The computed data for the same region are given in Table 2 for Frames 225 
to After Perpendicular (Frame 250), which corresponds to a length of 50 ft, and for 
the 22-ft to 44-ft waterlines. 

Tables 1 and 2 contain what is essentially 1/20 of the actual input and output 
data. 

6. Conclusion. The methods derived here were developed to serve as a means for 
finding an arbitrarily large number of full-scale offsets if only a limited number of 
offsets, taken from a preliminary design, are given. This particular use guided us 
in the choice of the type of curve to represent a typical ship line. As was made 
clear, particularly in Section 3, special care was taken to avoid unwanted fluctua- 
tions. 

If we fit a whole waterline or a half waterline with a single polynomial, we do 
not have any assurance that our lines are free from unwanted fluctuations. Even 
a least-squares procedure will not necessarily exclude unwanted fluctuations, since 
it controls only the discrepancies between given and computed points and does 
not put any constraint on the curvature. In Section 3 we described a method where 
such a constraint on the curvature is applied. 
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TABLE 2 
Waterline Half-Breadths Computed on IBM 704 for LPD 1 

(From Frame 225, x = 450 ft, to Frame 250, x = 500 ft; Frame Spacing 2 ft. 
Dimensions in ft-in.-8ths) 

Frame 22-Ft W.L. 24-Ft W.L. 26-Ft W.L. 28-Ft W.L. 30-Ft W.L. 32-Ft W.L. 

225 35- 1-4 35- 4-7- 35- 8-1+ 35-11-4 36- 2-6+ 36- 6-1 
226 34-10-5+* 35- 2-1- 35- 5-4- 35- 8-7- 36- 0-2- 36- 3-5- 
227 34- 7-6+ 34-11-2 35- 2-6- 35- 6-1+ 35- 9-5- 36- 1-0+ 
228 34- 4-7 34- 8-3+ 34-11-7+ 35- 3-3+ 35- 6-7+ 35-10-3+ 
229 34- 2-0--* 34- 5-4+ 34- 9-1- 35- 0-5+ 35- 4-2- 35- 7-6+ 
230 33-11-0- 34- 2-5 34- 6-2 34- 9-7 35- 1-4 35- 5-1 
231 33- 8-0- 33-11-5+ 34- 3-3- 34- 7-0 34-10-6- 35- 2-3 
232 33- 4-7+ 33- 8-5+ 34- 0-3+ 34- 4-1 34- 7-7 34-11-5 
233 33- 1-7- 33- 5-5 33- 9-3+ 34- 1-2 34- 5-0+ 34- 8-7 
234 32-10-6- 33- 2-4+ 33- 6-3+ 33-10-2+ 34- 2-1+ 34- 6-0+ 
235 32- 7-4+ 32-11-4- 33- 3-3 33- 7-3- 33-11-2 34- 3-2- 
236 32- 4-3- 32- 8-3- 33- 0-2+ 33- 4-2+ 33- 8-2+ 34- 0-3- 
237 32- 1-1 32- 5-1+ 32- 9-2- 33- 1-2 33- 5-3- 33- 9-3+ 
238 31- 9-7 32- 2-0- 32- 6-1- 32-10-2- 33- 2-3- 33- 6-4 
239 31- 6-5- 31-10-6- 32- 2-7+ 32- 7-1- 32-11-2+ 33- 3-4+ 
240 31- 3-2 31- 7-4- 31-11-6- 32- 4-0- 32- 8-2 33- 0-4+ 
241 30-11-7 31- 4-1+ 31- 8-4- 32- 0-6+ 32- 5-1+ 32- 9-4 
242 30- 8-4- 31- 0-7- 31- 5-2- 31- 9-5 32- 2-0+ 32- 6-4- 
243 30- 5-0+ 30- 9-4- 31- 1-7+ 31- 6-3 31-10-7 32- 3-3+ 
244 30- 1-5- 30- 6-1- 30-10-5- 31- 3-1 31- 7-6- 32- 0-3- 
245 29-10-1- 30- 2-5 30- 7-2- 30-11-7 31- 4-4 31- 9-2- 
246 29- 6-4+ 29-11-1+ 30- 3-7- 30- 8-4+ 31- 1-2+ 31- 6-0+ 
247 29- 3-0- 29- 7-5+ 30- 0-3+ 30- 5-2- 30-10-0+ 31- 2-7 
248 28-11-3- 29- 4-1 29- 9-0- 30- 1-7- 30- 6-6 30-11-5+ 
249 28- 7-5+ 29- 0-4+ 29- 5-4- 29-10-3+ 30- 3-3+ 30- 8-4- 
250 28- 4-0 28- 8-7+ 29- 1-7+ 29- 7-0 30- 0-1 - 30- 5-2- 

Frame 34-Ft W.L. 36-Ft W.L. 38-Ft W.L. 40-Ft W.L. 42-Ft W.L. 44-Ft W.L. 

225 36- 9-3+ 37- 0-6 37- 4-0+ 37- 7-3- 37-10-5+ 38- 2-0 
226 36- 7-0- 36-10-3- 37- 1-6- 37- 5-1- 37- 8-4- 37-11-7- 
227 36- 4-4- 36- 7-7+ 36-11-3- 37- 2-6+ 37- 6-2 37- 9-5+ 
228 36- 1-7+ 36- 5-3+ 36- 8-7+ 37- 0-4- 37- 4-0- 37- 7-4 
229 35-11-3- 36- 2-7+ 36- 6-4 36-10-0+ 37- 1-5+ 37- 5-2 
230 35- 8-6 36- 0-3 36- 4-0 36- 7-5+ 36-11-2+ 37- 3-0- 
231 35- 6-1- 35- 9-6+ 36- 1-4 36- 5-2- 36- 8-7+ 37- 0-5+ 
232 35- 3-3+ 35- 7-1+ 35-10-7+ 36- 2-6- 36- 6-4 36-10-3- 
233 35- 0-5+ 35- 4-4 35- 8-3 36- 0-2- 36- 4-1- 36- 8-0- 
234 34- 9-7+ 35- 1-7- 35- 5-6 35- 9-5+ 36- 1-5 36- 5-5- 
235 34- 7-1+ 34-11-1 35- 3-1 35- 7-1- 35-11-1 36- 3-1+ 
236 34- 4-3- 34- 8-3 35- 0-3+ 35- 4-4 35- 8-5- 36- 0-6- 
237 34- 1-4 34- 5-5 34- 9-6 35- 1-7 35- 6-0+ 35-10-2- 
238 33-10-5+ 34- 2-7- 34- 7-0+ 34-11-2 35- 3-4- 35- 7-6- 
239 33- 7-6 34- 0-0 34- 4-2+ 34- 8-5- 35- 0-7 35- 5-2- 
240 33- 4-7- 33- 9-1+ 34- 1-4 34- 5-7 34-10-2 35- 2-5+ 
241 33- 1-7+ 33- 6-2+ 33-10-6 34- 3-1+ 34- 7-5 35- 0-1 - 
242 32-11-0- 33- 3-3+ 33- 7-7+ 34- 0-3+ 34- 5-0- 34- 9-4 
243 32- 8-0- 33- 0-4 33- 5-1- 33- 9-5+ 34- 2-2+ 34- 6-7+ 
244 32- 4-7+ 32- 9-5- 33- 2-2- 33- 6-7 33-11-5- 34- 4-2 
245 32- 1-7 32- 6-5 32-11-3- 33- 4-1- 33- 8-7- 34- 1-5 
246 31-10-7- 32- 3-5 32- 8-4- 33- 1-2 33- 6-1- 33-10-7+ 
247 31- 7-6 32- 0-5 32- 5-4 32-10-3+ 33- 3-3- 33- 8-2- 
248 31- 4-5 31- 9-5- 32- 2-5- 32- 7-4+ 33- 0-4+ 33- 5-4 
249 31- 1-4 31- 6-4+ 31-11-5 32- 4-5+ 32- 9-6- 33- 2-6 
250 30-10-3- 31- 3-4- 31- 8-5 32- 1-6 32- 6-7 33- 0-0 - 

* Plus sign indicates +A1 in.; minus sign indicates -F in. 
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The representation of a single line by means of different cubics for different 
parts of the line, which might be cumbersome for hand calculations, does not con- 
stitute any difficulty for a high-speed computer. 
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