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1. Introduction. In [1] Sheldon presented an iteration scheme for solving certain 
elliptic difference equations. The computational experiments described in his paper 
indicated that this method was superior to the method of successive overrelaxation 
[2]. We shall show that this conclusion is valid for the model problems that he con- 
sidered but that it is not valid for general diffusion difference equations. 

In this paper, theoretical convergence of the method is established, a variational 
scheme for estimating the optimum parameters is developed and numerical results 
are given for some typical diffusion calculations encountered in nuclear reactor 
theory. 

2. General Theory. The two-dimensional diffusion difference equations can be 
simplified to be of the form 

(1) (I-B)O = SI 

where B is a real symmetric n X n matrix with spectral radius less than unity and 
with zero diagonal entries, S is a known source vector, and p is an unknown flux 
vector. The Jacobi method of iteration, which is also known as the method of simul- 
taneous displacements [2], for solving system (1) is given by 

(2) +(t) = B+(t-'t + S. 

Let E(t) equal p - O(t), where p is the unique solution to equation (1). The error 
vector E(t) satisfies 

(3) E(t) = BE(t-'). 

Consider some ordering a- of the integers 1 < i ? n. Let Pa stand for the cor- 
responding n X n permutation matrix and let 

B, - PBPT. 

Then B, can be written as Ba = R1 + RIT where R, is a lower triangular matrix 
with zero diagonal entries. Now let p, = Pq4O and S,, PS. The method of suc- 
cessive overrelaxation is given by 

(4) spa = ( 1 - + w)[P(t) + Ro, T(-I ? St . 
The error vector satisfies 

E(t) = La(IE(t-]) _ - wR,>)-'[(l - w)I + wR T]E(t- 
or in terms of the ordering implied in equation (1), 

E(t) = PaL, aPE(t-1) 

(5) 
(I - wIR?)-[(I - w)I + wR,,,T]E(t-' 
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where RjT = PTRP, . If the spectral radius of B (the maximum of the magnitude 
of the eigenvalues of B) is p(B), Young [2] has shown that for "consistent order- 
ings" the optimum value of c to use is 

2 
1 + a/1 -g2(B) 

For this value of w, the spectral radius of L,,,, is 

(6) g[LaW] = 1 - 1 - /2(B) 1 + V\// + p2(B) 

If p(B) = 1 - ( << 1), then p[La, ] = 1 - 2v/'2 ? (e). If we define the 
rate of convergence of the successive overrelaxation method, R(La,,) as 

(7) R(Le) = -in q[La a] 

we see that, for g(B) close to unity, 

(8) R(La ) _ 2V"4. 

The method of symmetric successive overrelaxation with extrapolation is a three- 
step process given by 

(2t-1) = (1 - ?)(2t-2) + W[R 2t-1) + R T4)(2t-2) + S] 

(9) <>(2 t) = (1 _ )4)(2t-1) + c.)[R0(2t-1) + k T? (2t) + S] 
(,(2 t) (2t-2) (2t) (2t2)] + b -[cp(2t2) _ g(2t-4)] 

where the at and bt are chosen according to a technique developed by Stiefel [3], 
an extension of a polynomial extrapolation scheme introduced by Shortley and 
Weller [4]. The error vector for this scheme satisfies 

(10) E(2t) =M(t)E(o) 

where 

M-(t) M(t-1) + at[M,,M(t-1) - M ',,-] + bt[MA j - -MaX ] 

with 

Mq~ = (I - PT)1[(1 - f)I ? wRj(I - WRa[(1 - w)I + W&T]. 

If the spectral radius of M, X is q[M, w] = 1- 7 ( << 1), and if we define 
the rate of convergence of the scheme (9) as 

R(M(t) -- in p[Mg 2] 

then for large t and optimum at and bt , we have 

(11) R(M (t) ) /X. 

In what follows we will first establish the convergence of iteration scheme (9) 
and then investigate the dependence of e on e for some typical reactor diffusion 
problems. 
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3. Convergence Theorem. A minor manipulation shows that the successive 
overrelaxation operator in equation (5) can be expressed as 

(12) PTLJ,,WP = I - w (I - coI)?)-1(I - B). 

Since the spectral radius of B is less than unity, (I - B) is positive definite and 
hence has a positive definite square root. We shall continue to use the notation 

Fk(A) to denote the spectral radius of A and we shall use 11 A f1, to denote the spec- 
tral norm of A defined by 11 A 11s = V,:I(AAT) for real A. We now prove 

LEMMA. The spectral norm of (I - B)112pITL",, (I - B) -1/2 is less than unity 
for 0 < co < 2. 

Proof. By definition the spectral norm of (I - B)"12pITLa," P(I -B)-1/2 

is the square root of the largest eigenvalue of 

Na, = [I-c(I -B) 1/2(I -,c ) -1 (I - B) 1/2] 

=[I - coB(I - B))1]2(I _ (R T)-1(j - B)1/21 

Obviously, the eigenvalues of Na, are non-negative. What has to be shown is that 
they are less than unity for 0 < c < 2. But 

NV~. = I - co(I - B)"X2(I -CfR )-1 

*[(I - WRT) + (I -_ CoIq) - co(I - B)](I - WRaT)>'(I - B) 2 

= I - c(2 - co)(I - B)"12(I - CRY)-(I - _,R T)-'(I - B)1/2 

= I - co(2 - co)(I - B) (I - c*'Y)'][(I - B) 2(I - C ) ]T- 

For 0 < c < 2 we see that we can write 

G', = I - Pa, ,WpJ 

where P,,, = o,(2 -co)(I - B)"12(I _- )-1 

Since the eigenvalues of a real nonsingular matrix times its transpose are real 
and positive, we see that the eigenvalues of Na,, are less than unity. Hence the 
lemma must follow. 

THEOREM*. The spectral radius of the product of a finite number of successive over- 
relaxation operators rI L,,,,P, , is less than unity for 0 < cw < 2. 

a, ~ 
Proof. The proof is obvious since 

!i{FJ PaTLu,APu} = I {(I - B) '2[J jP TLq,coPu](I - B)-1/2 
a, coo, c 

z{j (I -B) 112PaTLL WPU(I - B) -1/2 

and hence 

jz{Jjj PUTLT, WP} _ IJ fj (I - B)l12PoTLUWPU(I - B) -12 11 < 1. 
a,~~~~~~~~~~~~~r co 

by the Lemma. 
COROLLARY. The eigenvalues of the symmetric successive overrelaxation operator, 

Mas I are real, nonnegative, and less than unity for 0 < co < 2. 

* It was pointed out by the referee that this theorem may be derived as a special case of a 
result by Ostrowski [5]. The proof, however, is different. 
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Proof. Malaw is the product of two successive overrelaxation operators 

M,, c = P&TL&,,,P&PTL,,,,P, 

where the a ordering is the converse of the ar ordering. Hence from the theorem, 
the spectral radius of Mask is less than unity. That the eigenvalues of M,,,,, are 
real and positive follows from (using equation (12)): 

(I - B) 12Ma w(I - B) -12 = [I - a(I - B) 112(j _ Wf T)-I(I - B) 1/2i 

[I -- (I - B)'2(I - _ Rq)-(I - B)"2], 

and noting that this operator is thfe product of an operator times its transpose. 
Thus we have shown that polynomial extrapolation is applicable (since the 

eigenvalues of M,,,, are real) and that the iteration scheme (9) will converge. 

4. The Optimum Extrapolation Parameter. We define the "optimum" extrap- 
olation parameter X for the symmetric successive overrelaxation scheme for a 
given ordering a, as that value of co for which the largest eigenvalue of M, is 
minimized. From equation (12) we see that 

= [I - (I -WRT)-7(I - B)][I- -- )I(I(I - B)] 

= I- c(I -coRT)-l[(I - W,) + (I- WkT) 

(13) - @(I - B)](I - R~ '(I - B) 

- I - ~o(2 - c)(I - RT)-l(I - cwRa)-(I - B). 

Thus we see that the optimum co is that value of X for which the largest eigenvalue of 

(14) [I -CB + 
o RI R]T (I B). 

is minimized. We note that if X,), is the largest eigenvalue of (14) and o)0 the largest 
eigenvalue of M,,,, 

0 1 
= 1-X O 

Moreover, the eigenfunction itU corresponding to X,,C is the eigenfunction of M,,,o 
corresponding to 0&,?. Let 

A _ -o e a; C = I - B 
(15) w(2-co) 

Xo = + 5w; 41co, = ,+o+A41 

We then have 

A (@)A 4i= X WCAw 

f(ee')n p t, f equCti t a hs 

If we take the inner product of the first equation with iko and the second with 
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4t.) and subtract the two resulting equations, we obtain, after some manipulation, 

(XI, - X0.) (s&.O, Cat'?) = + (t A {,, a 

(16) 2 
9 2/ 

+ O) i I kA4(0 _ (Ai , [A - X,0CIA4t') + (6aW) 

where the definitions of aA/aw and &2A$3aW2 are obvious. From equation (16) we 
see that X,?P has a stationary value for that co for which (4,st, (aA/awo)4,",) = 0 
is satisfied. This is equivalent to 

2 
(17) W = P. = 1 - 2-r. + 4k. 

where 

T = (ikO0 Bt); kw = (+, ?)&&%O). 

It should be noted that P,, > 0, since (A/', [I - 2R][I - 2RaJT]4) > 0 unless 
-= 0. Thus 0 < w < 2, and convergence is guaranteed. Moreover, when co 

satisfies (17), a calculation shows that 

O+0 a 2A +0)>O ~~ 411) > 0. 

Since A and C are symmetric, A - XC is negative semidefinite, hence the third 
term on the right-hand side of (16) is nonnegative. Therefore, when relation (17) 
is satisfied, X), is minimized. For the value of w satisfying relation (17), the spectral 
radius of the symmetric successive overrelaxation method is given by 

I-1 
- Tr- 

(18) 0=1 1co(2 ) +2k = 1-rj 

A procedure for estimating the optimum w might be to use a trial function in 
relation (17). In obtaining the few numerical results presented later, this procedure 
seemed fairly insensitive to the trial function. 

5. Comparison with Successive Overrelaxation. For w satisfying equation (17), 
and with 1- = 5" << \PI, we obtain for v in equation (11): 

(19) 25@ 

Since km, < 1 and 1- rx > e- 1 - z(B), where p(B) is the spectral radius of B, 
we see that the right-hand member of equation (19) has a lower bound 

(20) = 2= 
va3 
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So we see that for some problems symmetric successive overrelaxation may have a 
convergence rate satisfying 

(21) R(M2(t) )- 
(3)1/4 

In comparing this equation with equation (8), we see that it may be possible for 
successive overrelaxation to be about three times as rapid in convergence as the 
symmetric successive overrelaxation. The lower bound in equation (2) was ob- 
tained when we placed k,, = 1. If we assume that P. = 0(e) and 6,&= 0(e), 

then i7c = O(E'12); that is, the symmetric successive overrelaxation method will 
converge much faster than the successive overrelaxation method. However, for this 
particular case, we see that we need 

(22) = - + 0(e). 

6. Numerical Results. An experimental program was written by Miss B. D. 
Baldwin for the IBM 704 to compare the symmetric successive overrelaxation 
method with the successive overrelaxation method in numerically solving the two- 
dimensional diffusion equation 

(23) -VDVO + AX = S; A > 0; D > 0 

in a finite region and with appropriate boundary conditions. 
The Jacobi spectral radius g(B) and fundamental eigenfunction were determined 

by iteration. The successive overrelaxation convergence rate was calculated from 
,p(B). The fundamental eigenfunctions of the symmetric successive overrelaxation 
method for various values of X were determined by iteration. For each co the re- 
suling eigenfunction was used as a trial function in equation (17) to calculate 
COOPTS Problems representative of typical reactor diffusion calculations were ex- 
amined. The following results were typical: 

Successive Overrelaxation Symmetric Successive Overrelaxation with Polynomial Extrapolation 

Sweep 
Ratio 

#(B) WOPT R(Lw,@) r e WOPT R(M(t)) , 

Calc. 1 ....... 0.988 1.73 0.27 0.988 0.334 1.25 0.20 1.35 
Calc. 2 .. 0.995 1.82 0.18 0.995 0.313 1.32 0.10 1.80 

The last column of the table gives the estimated ratio of convergence rates of sym- 
metric successive overrelaxation to successive overrelaxation sweeps. 

In general then, Sheldon's results do not follow. However, it can be seen that in 
special cases his results will be valid. If we take the coefficients D and A to be con- 
stant and if we use equal mesh spacing in numerically approximating the differen- 
tial equation (23) then it can be shown that equation (22) will be valid. 
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