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1. Introduction. The wave equation for the nuclear motion of a diatomic mole- 
cule, in the Born-Oppenheimer approximation, is one which is encountered fre- 
quently in quantum-theoretical calculations. Numerical methods for its solution 
have been developed and used [1, 2, 3, 4] over many years for atomic problems 
where the potential is one obtained by Hartree-Fock self-consistent fields or the 
Thomas-Fermi-Dirac statistical field methods. Only relatively recently have com- 
putational techniques and the application of electronic computers enabled one to 
obtain accurate theoretical internuclear potentials at enough internuclear distances 
to calculate the wave functions for the motion of the nuclei and use them to ob- 
tain averages, over the nuclear motion, of molecular properties. 

The present investigation is concerned with obtaining an accurate method for 
calculating the nuclear wave functions and vibrational-rotational energies of 
diatomic molecules with some economy in the number of values of the internuclear 
potential required. An improved formula for the correction of trial eigenvalues, 
which does not depend so much for its accuracy upon the smallness of the step- 
size in the radial coordinate, and an analysis of the convergence of the procedure 
are given. A computer subroutine was written and numerical results obtained from 
it are described for a case where exact analytical solutions are known. 

In what follows, the vibrational quantum number v, v = 0, 1, 2, , will be 
used as a subscript to index the eigenvalues Ev with the usual convention that 
Eo < E1 ? E2 ? 

2. Method of Integration. The Schr6dinger wave equation for the motion of the 
nuclei of a diatomic molecule, regarded as a symmetric top, can be expressed in 
polar spherical coordinates R, 0), 4 of one nucleus relative to the other and one 
additional coordinate 4 giving the angular orientation of the electronic charge 
cloud about the internuclear axis. It has been shown [5] that the wave equation 
can be separated into its angular and radial parts and its solution may be expressed 
in the form 

= R' P(R) YJAM(0, 4)a, +) 

where P(R) is the solution of- the one-dimensional radial Schroedinger equation 

P(2)(R) = (U(R) - E) P(R), 

(2.1) p(n) = d nP/dRn, 

the YJAM's are the hypergeometric functions, A is the quantum number for the 
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z-component of electronic angular momentum, and the radial internuclear potential, 
U(R), is of the form 

U(R) = [J(J + 1) - A 2]R-2 + Za Zb R-' + Eel(R)* 

The second term is the electrostatic Coulomb repulsion energy of the nuclei and 
EeI(R) is the electronic energy obtained by solving the electronic wave equation 
for each fixed internuclear distance R. The boundary conditions for (2.1) are 
P(O) = 0, P(R) bounded. 

To get a difference equation whose solutions approximate the solutions of (2.1) 
we let 

Ri = MIh i = O. 1, 2, ... *, n + 1 

(2.2) Pi = P(Ri), 

Ui= U(Ri). 

By dropping terms of the fourth order and higher in the series 
oo 2h 2k 

(k 

(2.3) ~ Pi+ + pi_1 = E 2kPi 
k==O (_2k)! 

and by using the differential equation to replace pi(2), one obtains the simple 
integration formula 

(2.4) Pi+, + P_1 - 2Pi = h'(Ui - E)Pi 

which has an error of approximately (h4/12)Pi(4). A higher-order integration 
formula, which does not involve any more values of Pi, can be obtained by sub- 
tracting h2/12 times the series 

(2.5)21 + p) = 2h2k 

(2.5) t+ + (2k)!2k+2) 
k==O (2 k) ! 

from (2.3). Then, dropping sixth and higher-order terms in h gives 

(2.6) Yi+1 + Y-1 - 2Y, = h2(Ui - E)Pi 

where 

(2.7) Yi = Pi - (h2/12)P (2)= [1 -(h2/12)(Ui - )]P. 

The error in (2.6) is approximately -(h6/240)P(6). The integration formula 
(2.6), usually attributed to Numerov [61, involves the extra calculation of the Yi's 
but reduces the number of points where values of U(R) are required. 

In the range E > U( co), corresponding to unbound states of the two nuclei, 
solutions of (2.1) exist for all E and can be approximated by simply using (2.4) 
or (2.6) to integrate outward, starting with the boundary values 

(2.8) PO = 0, P1 = a small arbitrary number. 

For E < U (cc), the two nuclei are bound together and solutions of (2.1) exist 
only for a set of discrete values of E, the eigenvalues of the problem. The method 
for calculating these eigenvalues and corresponding solutions, or eigenfunctions, 
is the subject of the present work. 
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The boundary condition, P(R) bounded, is approximated, as usual, by the 
conditions 

(2.9) PP+1 = a small arbitrary number 

Pn = Pn+j exp (Rn+lV/Un+l - E -Rn Rv/Un - E). 

The second of these conditions results from the assumption that, at Rn, U(R) is 
slowly approaching a constant. 

The usual numerical procedure is to provide a first estimate of E and integrate 
outward from R = 0 to some point Rm, using starting values (2.8) and integration 
formula (2.4) or (2.6). Since (2.1) is homogeneous in P(R), the resulting Pi values 
may be replaced by PiOUt = Pi/PmX i = 1, 2, ... , m. With starting values (2.9), 
the same procedure is used to integrate inward from Rn+1 to Rm and yields values 
Pan i = n + 1, n, , m such that Pmn = PmiUt = 1. Then, a correction to E is 
determined by the difference between the slopes of the two curves at the crossing- 
point Rm and the process is repeated until the two curves meet with the same 
derivative. The correction D(E) [1] (See equation 6, p. 86) is usually calculated by 
using the formula 

(2.10) D(E) = (P - P') / f {P(R) }2 dR 

where the terms in the numerator are the derivatives at Rm of the curves resulting 
from the outward and inward integration respectively. 

Equation (2.10) has been derived from the differential equation and is claimed 
to give first-order convergence in the error. This means that if a trial solution 
satisfies the differential equation (2.1) at all points except Rm , then ('2.10) deviates 
from the true correction by an amount which is proportional to the correction. In 
the next section, it will be shown that the eigenvalues of the difference equations, 
(2.4) or (2.6), are the zeros of appropriate functions F(E) of the trial eigenvalue E 
and that these zeros can conveniently be calculated by the Newton-Raphson 
method. The correction is 

(2.11) D(E) = -F(E)/F'(E) 

and, for E near an eigenvalue Eo, 

(2.12) D(E) = AE + (AE)2Q + high-order terms in AE 

where AE = Eo- E and 

(2.13) Q = F"1(E0)/2F'(Eo). 

Thus, the convergence of the present method is of second order in AE. In Section 4, 
an analysis of the behavior of D(E) over the whole range of E is given. 

3. Correction formula. The integration formulas (2.4) and (2.6) can be written 
as systems of equations in the Pius and Yi's respectively, as follows: 

(2h-2 + U1 - E)P1 -h-2P2 = 0 

(3.1) -h-2Pi_l + (2h-2 + Ui - E)Pi-h -2p+l = 0 

-h-2P_l + ( h-2 + U, - E)P, = 0 
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and 

{2h-2 + (U1 - E)[1 - (h2/12)(U1 - E)]-'}Y- h-2y2 = 0 

(3.2) -h 2Yi_l + {2h-2 + (Ui - E)[1 - (h2/12) (Ui - E)]-'} Yi-h -2yi+ = 0 

-h 2Y n- + { h2 + (U. - E)[1 - (h2/12)(U - E)]-'}Y, = 0 

where i = 2, 3, ... , n - 1 in both cases. A term involving E has been omitted 
from the nth equation in both (3.1) and (3.2). It can easily be shown that if one 
has, as one should, started the inward integration at a large enough Rn to justify 
the assumption used in forming the boundary condition (2.9), this omission is 
justified. 

The procedure used here to derive and analyze the correction formula is an 
adaptation of a very general and effective technique, due to ULwdin [7], for calcu- 
lating solutions of the Schroedinger equation. To apply LUwdin's method, consider 
the vector-matrix formulation of equations (3.1) or (3.2), 

(3.3) MC = 0, 

where 0 is a null vector, C is a vector containing the Pi's or the Yi's, as the case 
may be, and M is the symmetric matrix of coefficients which, for the present, may 
simply be regarded as functions of E. After an outward and an inward integration 
with a trial value of E, all equations except the mth are satisfied. Now, assume 
that the first row of M and the first element of C correspond to the mth equation 
and the mth variable, respectively, in equations (3.1) or (3.2). Then, by parti- 
tioning the first index of M and C, the result of the integration can be expressed, 

(3.4) /(Mn Ml) (1) =F(E)) 
~Mal Maa Ca ? 

where F(E) is the amount by which the mth equation of (3.1) or (3.2) is not 
satisfied when integrating with the trial value E. It is assumed that the first ele- 
ment of C, which is Pm or Yn , is nonzero and, for convenience, it is set equal to 1. 
Equation (3.4) may be written in the form 

(3.5) F(E) = M11 + Mtl Ca 

(3.6) 0 = Mal + Maa Ca. 

The function F(E), whose zeros are the eigenvalues of the difference equations, 
is defined by (3.5) in terms of Ca which, in turn, is defined as a solution of (3.6). 
Furthermore, if E is such that I Maa 1 $ 0, then the solution Ca of (3.6) is unique 
and F(E) is uniquely defined. An expression for F'(E) is obtained by differentiat- 
ing (3.5) and (3.6), with respect to E, 

(3.7) F'(E) M1l + Mat Ca + Mal Ca' 

(3.8) 0 = MaL + Maa Ca + Maa Ca' 
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Multiplying (3.8) on the left by Cat gives 

(3-9) 0 = Cat ML + Cat M'a Ca + Cat Maa Ca'. 

From (3.6) and the fact that Maa is symmetric it is seen that if (3.7) and (3.9) are 
added, the terms containing Ca' cancel and the result is 

(3.10) F'(E) = M1l + MWt Ca + Cat Ma1 + Cat Maa Ca 

which can be written 

(3.11) F'(E) = Ct M' C. 

In the two cases considered here, only diagonal elements of M depend upon E 
so that the correction formula (2.11) can be written 

(3.12) D(E) =-F(E) j Ci2M'i. 

In the case of (3.1), the derivatives of the diagonal elements of M are all equal to 
-1 so (3.12) becomes 

n 
(3.13) D(E) = [(Pmi1 + 2Pm - Pm+i)h 2 + (Um - E)Pn/Z E Pi2. 

It is of some interest to compare this with the correction formula (2.10). If, in 
(2.10), central differences at Rm are used to estimate the derivatives and the 
trapezoidal rule is used to estimate the integral in the denominator, then (2.10) 
is the same as (3.13). Therefore, use of the integration formula (3.1) and correction 
formula (2.10) as described above yields a second-order process in AE. 

In the case of the Numerov integration formula, where equations (3.2) are 
solved, the derivatives of the diagonal elements of M are 

(3.14) M'i = -[1 - (h2/12)(Ui - E)]-2, i = 1, 2, ... , n. 

By substituting (2.7) the correction formula (3.12) may be written 

n 
(3.15) D(E) [(-Ym_ + 2Ym - Ym+i)h2 + (UUm - E)Pm / Pi2. 

Unlike the case with the simpler integration formula (3.1), this is not the correction 
one would obtain from (2.10) by using the most natural higher-order estimates 
of the quantities in (2.10). 

4. Convergence. When the Numerov integration formula (3.2) is used, a 
rigorous treatment of the convergence of the method would be quite complicated. 
Furthermore, since the difference in the two methods considered is a term of order 
h4 in the solution P(R) and since both are second-order processes in AE, one is 
justified in assuming that the essential features of the convergence of the two pro- 
cedures will be about the same. Therefore, the convergence of the method using 
equations (3.1) will be considered here. 
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To get expressions for F(E), F'(E) and D(E), let 

Gm K K 

G1.K K 
K>* 

(4.1) H= K | K Gm 
_KG--------------------- - 

Ki Gm+, K 

K Gn 

where 

K =-h-2 

Gi 2h -2 +U i= 11 2, ... n I 

Gn= h-2 + Un 

and where the blank spaces denote zero elements. Then, for equations (3.1), 

(4.2) M = H-IE 

where I is the identity matrix. The symmetric matrix Maa can be diagonalized by 
an orthonormal matrix U, whose columns are eigenvectors of both Maa and Haa. 
Thus, 

(4.3) Maa- UAUt 

where A is a diagonal matrix with the eigenvalues of Maa on its diagonal. Then, if 
no eigenvalue of Maa is zero, a solution of (3.6) exists and can be written 

(4.4) Ca= -Maa-'Mal = -UA-UtMal. 

Letting 

(4.5) V = UtMal 

and substituting (4.4) for Ca in (3.5), one obtains 

F(E) = Ml- VtA'V 
(4.6) = Mll-E Vv2X-1 M= - Z V,2i. 

v 

As one can see from (4.2), the diagonal elements of A are 

(4.7) Xv = ev-E 

where ev, v = 1, 2, *, n- 1, e, < ev+l, are the eigenvalues of Haa the matrix 
obtained by deleting the first row and column of H. Hence, 

(4.8) F(E) = 2h-2 + Urm - E - E V2(ev -E)-1 
v 
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and 

(4.9) F'(E) = -1-E V_2(e E)--2. 

The set of points R1, *.. * Rmn+i, R ,IAn referred to by the subscript 
"la" in the vectors and matrices above, may be partitioned into the set of points 
Ri, X *Rm-1 , used in the outward integration, and the set of points Rm +i ..* 

Rn Used in the inward integration. Letting "out" and "in" subscripts denote the 
sub-vectors and sub-matrices resulting from this partitioning, Haa can be written 

/out ? 
(4.10) Haa = ( 0 

\ Hi,/ 
where Hout and Hi. are the block matrices lying on the diagonal in (4.1) and en- 
closed by the dashed lines. By partitioning in this manner, (4.3) can be written 

Mout = UoutAoutUotut 
(4.11) t M in = UinAinUin 

where the columns of Uout and Uin are the eigenvectors of Hout and Hin respectively. 
Therefore, e., v = 1, 2, ... , n - 1, are the eigenvalues of Hout and Hi.. From the 
form of H, it is evident that the e,'s are the values of E which, on the outward 
and inward integrations, respectively, lead to Pm = 0, which is contrary to the 
assumption that the first element of C is nonzero. 

To show that F(E) is undefined at and only at the eigenvalues e, it is necessary 
to show that no 1, is zero in (4.8). This is evident since (4.5) and the form of 
Mal imply that the elements of V are - h-2 times the elements in the last row of 
Uout and the first row of Uin . If any such element of Uout or Uin were zero, then, since 
Mout and Min are tridiagonal matrices, the column containing that element would 
be zero. This, of course, is not so, since these columns are the eigenvectors of Mout 
and Min . 

It may be of some interest to show how the characteristic polynomial, 

(4.12) P(E) = I M 1 

of (3.1) is related to F(E). From (4.3) and (4.5), one gets 

M1l Vt 
(4.13) P(E) = 

V A 

which can be expanded in the elements of the first row and column of the determi- 
nant to give 

P(E) = M11H[Iu X -E Zv2 U Xv 

(4.14) - 

(ml 
-Z V2X-1) U| xv. 

v v 

From (4.6) and (4.7), it is seen that 

(4.15) P(E) = F(E).ll (ev - E). 
v 
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Equations (4.8) and (4.9) enable one to determine the general behavior of 
F(E), and D(E). They show, first of all, that F(E), F'(E) and D(E) are defined and 
continuous for all E except E = e,, v = 1, 2, * , n - 1 and that 

F(E) 2h-2 + Um -E for I E I large 

F(E) < 2h-2 + Um-E for E < el 

F(E) > 2h-2 + Um - E for E > en-l 

(4.16) F(E) I -V_ 2(ev -E) for E t ev 

F'(E) < -1 for all E 

F'(E) -1 for I E I large 

F'(E) r -V" 2(e - E)2 for E ~ ev. 

Therefore, in each of the intervals into which the points ev divide the E-axis, F(E) 
is a continuous decreasing function which goes from positive to negative values. 
Hence, in each such interval, F(E) must have one and only one zero. Let these 
zerosbedenotedbyEv,v = 0, 1, 2, * - ,n- 1 withEo < el , ev <E< ev+1, 
e_1 < E.-,. The index v is, therefore, the vibrational quantum number. From 
(4.16), it is apparent that the correction formula (3.13) has the following prop- 
erties: 

D(E) E E-ev for E / e, 

D(E) 2h-2 + Urn - E for I E l large 

(4.17) D(E) <2h-2 + Ur - E forE <e1 

D(E) > 2h-2 + Um-E for E > e.1 

D(E) E,-E forEEvE. 

The last condition is a general property of the Newton Raphson method (see 
(2.12)). A plot of F(E) and D(E), derived from the above analysis, may be 
expected to appear as shown in Figure 1, 

A serious convergence difficulty is immediately obvious from the first property 
of D (E). This indicates not only that E ~ e, leads to a gross underestimate of the 
correction for such values of E, but that the smallness of D(E) cannot, by itself, 
be used as a convergence criterion. The condition E ~ ev can easily be detected by 
the existence of a large F'(E) and an increase in D(E) from one iteration to the 
next. Another difficulty which may occur is a jumping from one branch of the 
F(E) curve to another on successive iterations. This can cause one to miss some 
desired eigenvalues and waste computing effort in converging to eigenvalues which 
are not wanted or which have already been computed. Convergence problems, 
therefore, are related to the distribution of the vertical asymptotes at ev, which 
are determined by the crossing point Rm, and to the selection of initial trial values 
of E. 

To investigate the role of R.., consider the convergence factor (2.13) 

(4.18) Q F" (E,) 
2F'(E,) 
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E0~~~ W~~~~~~~~~e:- 

FIG. 1.-Behavior of F(E) and D(E) curves. 

of the Newton-Raphson method. For E, ev 

(4.19) Q (ev -Ev 

showing that Q is large and convergence is poor if an eigenvalue E. is near a vertical 
asymptote. It was pointed out above that e, is a value of E for which Pm = 0 
on the inward or outward integration. Therefore, E, ev, is the situation where, 
for the correct solution, Pm 0. In other words, convergence is poor if Rm is near 
a node of the desired solution. Some practical means for selecting the crossing-point 
Rm X and initial estimates of E are given in the next section. 

5. Application. A computer subroutine was written which, when given a numeri- 
cal potential, an initial estimate of E, and an e, integrates by the Numerov method 
(equation (2.6)) and uses (3.15) to correct R. After D(E) starts decreasing from 
one iteration to the next, the convergence criterion D(E) < e is applied. 

In order to keep Rm as far as possible from a node of the solution and to acquire 
maximum significance where the solution is large, Rm is selected during the in- 
tegration as the point where Pi is largest. Since, for the applications considered, 
this occurs at the outermost maximum point of Pi, the inward integration is 
performed first and Rm is taken as the point at which Pi stops increasing with 
decreasing i. The description of the behavior of F(E), given in the previous sec- 
tion, is somewhat invalidated since, there, it was assumed that Rm was held fixed 
while varying E. Instead, the F(E) given by the present program will behave like 
F(E) of the previous section in each E-interval where the variation of E does not 
change Rm. 

The data used here to demonstrate the method was obtained for the case where 
U(R) of equation (2.1) is a Morse potential* [8] 

* The parameters used are: a = .711248, R. = 1.9975, D = 188.4355. These were obtained 
by fitting the Morse potential to a computed potential energy curve for H2+. Energies are 
given in units of 2,u atomic units, where jA is the reduced mass of the nuclei. 



372 J. W. COOLEY 

-5 

-180 -175 -170 E -165 -160 -155 

FIG. 2.-Graph of calculated D(E). Crosses on curve denote successive iterates obtained 
with poor starting values Eo' and E1'. 

TABLE 1 

Successive Iterates Obtained with Poor First Estimates of Eo and El 

i Eo(i) F(EF(t)) 

1 -168.800 00 -1470 -168.500 00 456.7 
2 -169.450 00 -727.9 -166.581 98 220.5 
3 -170.700 20 -350.7 -163.292 37 58.21 
4 -172.904 49 -113.0 -160.385 38 1.654 
5 -176.702 14 -26.24 -160.283 89 .0003 
6 -178.624 20 -2.042 -160.283 69 .1550 X 10-4 
7 -178.797 03 - .1786 X 10-1 
8 -178.798 56 - .5185 X 10-4 
9 -178.798 57 - .1228 X 10-5 

TABLE 2 
Dependence of Eigenvalues on n, the Number of Integration Points 

n BEo EBE2 E3 E4 

50 -178.81052 -160.35850 -143.02059 -126.83300 -111.81094 
100 -178.79924 -160.28784 -142.79397 -126.31918 -110.86348 
150 -178.79866 -160.28428 -142.78276 -126.29441 -110.81921 
200 -178.79857 -160.28368 -142.78090 -126.29031 -110.81191 

Exact -178.79850 -160.28182 -142.77990 -126.28824 -110.80832 

(5.1) U(R) = D[1 - exp (-a(R - Re))]2 - D. 

Values of the analytic solution are given for comparison. The range 0 < R ? 10 
was used in all cases. 

A graph of the calculated D (E) is given in Figure 2 for E in the region of the 
two lowest eigenvalues. The effect of the shifting Rm is evident. As one might expect, 
the discontinuities are large in the region of the ea's, where the two solution curves 
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cross with large slopes. On the other hand, there is a large region about each eigen- 
value E, where such discontinuities are negligible and where D(E) is almost a 
straight line of slope -1 and is, therefore, a good estimate of the necessary cor- 
rection. 

To show how the procedure converges when a poor first estimate of E is used, 
the program was given a value of E near el. As one can see in Table 1 where the 
successive trial values are given, and in Figure 2, D(E) increases for a number of 
iterations and then goes down rapidly. Table 2 gives some of the eigenvalues ob- 
tained for n = 50, 100, 150, and 200 points. Exact values of the analytic solution 
are given for comparison. Table 3 contains some of the values of the v = 0 eigen- 
functions which were obtained with 50, 100, and 200 points. Values obtained from 
the exact analytic solution are given in the last column. Figure 3 contains a graph 
of the potential (5.1) and the wave functions obtained for the v = 0, 1 and 2 states. 

6. Conclusions. The above results indicate that fairly good accuracy can be 
achieved rapidly by the above procedure, but that good first trial values are quite 
important, not only in reducing the number of iterations, but in assuring that no 

TABLE 3 
Dependence of Wave Function P(R), for v - 0, on n, the 

Number of Integration Points 

P(R) 
R _ 

n=50 n = 100 n = 200 Exact 

1.2 .022 5903 .022 3875 .022 3754 .022 3746 
1.6 .484 0974 .485 8844 .485 9864 .485 9927 
2.0 1.312 2858 1.310 2630 1.310 1471 1.310 1405 
2.4 .732 9700 .734 7376 .734 8413 .734 8476 
2.8 .126 3448 .126 4907 .126 4q98 .126 5004 
3.2 .008 9574 .008 9544 .008 9541 .008 9541 

1.0 , V2 - 200 

FIG. 3. P U(R)a = 
*1~~~~~~~~~~~~~-0 

-1.0 ~~~~~~~~~~~~~~-200 
0 1 2 3 4 5 6 7 8 

R 
FIG. 3.-Plot of potential U(R) and v =0, 1, 2 solutions. 
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desired solutions are missed. Good first estimates of EK can be obtained by fitting 
an analytic potential for which eigenvalues are known and using it to obtain first 
estimates of the lowest eigenvalues. An extrapolation of calculated eigenvalues 
can then give an approximation to each new eigenvalue. 

If it is inconvenient to obtain first estimates of E in this manner, one can have 
the computer subroutine perform just one iteration for each of a series of values of 
E to get a D(E) curve. Then, in each interval where D(E) changes from positive 
to negative, there is an eigenvalue for which a first estimate can be obtained by 
interpolation of D(E). A count of the nodes in the solution, given by the subrou- 
tine, is a check on the vibrational quantum number assigned and assures that no 
solution is missed. 
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