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1. Background. Ever since John Von Neumann introduced the "mid-square" 
method some ten years ago [11], users of "pseudo-random" numbers on modern 
digital computers have been generating their numbers as they were required in 
application, rather than drawing them from a table formed beforehand or obtaining 
them from a special-purpose device built expressly for this service. The advantages 
of Von Neumann's method were its speed, minimal storage requirements, and 
ability to be restarted from any desired point. 

For some years now the mid-square method has been replaced by other recursive 
methods which have increased further the advantages of this general technique of 
generation. The most popular of these has been the "multiplicative congruential" 
method proposed by Lehmer in 1951 [2]. An interesting variation of this method, 
which we may call the "mixed congruential" method, recently has received the 
attention of several authors [1, 9, 10]. We adopt the notation of Coveyou, one of 
these authors. The mixed congruential method then may be written 

(1) Xn + -XXn + A (mod P). 

Here the modulus P generally equals one more than the largest (fixed-point) 
integer which the computer can store. The multiplier X and the addend (or in- 
crement) 4 are, to a degree, optional parameters of the generator; both parameters 
are positive integers less than P and relatively prime to P. The starting value xo 
is the first term of the integer sequence {x,: 0 _ xn < P(n = 0, 1, 2, ... )I 
generated recursively by equation (1). And the numbers {x, /P} are the desired uni- 
formly distributed drawings from the unit interval. For the special case of , 0, 
equation (1) becomes the familiar multiplicative congruential method. 

2. Selection of Parameters. It is not difficult to find values of the parameters 
X and ,u which produce a maximum period in the {Xn} sequence for a given P [3-8, 
10]. When P is a power of 2, for example, any odd ju combined with any X- 1 
modulo 4 affords the maximum period, equal to P. For ,u = 0, the maximum period 
is reduced to P/4 and is attainable again with half the odd X, now X 3 or 5 module 
8 [10]. 

Length of period is one standard that has been used in the selection of param- 
eters; speed of generation is a second [1, 3, 4, 10]. But a great deal of freedom still 
remains, and the question of how best to use this freedom never has been fully 
answered. The most frequent solution has been to make a choice of parameters 

Received June 27, 1960; revised February 10, 1961. 

383 



384 MARTIN GREENBERGER 

which appears favorable on intuitive grounds*, and then carefully examine gen- 
erated subsequences by the standard statistical tests for serial correlations, 
runs, interval frequencies, and so on. 

If we had a complete understanding of the relationship between the number theo- 
retic properties of X, ju, and P, on the one hand, and the statistical properties of 
the sequence they generate, on the other, the selection problem essentially would 
be solved. The fact is that we are still a considerable distance from having this 
complete understanding. Some recent work [9], however, has provided a start in 
the right general direction. We set out now, first to comment on this work, and 
then to develop some additional results which will help in the choice of generator 
parameters. 

3. Serial Correlation. In his article on "Serial Correlation in the Generation 
of Pseudo-random Numbers" [9], Coveyou gives the following approximate formula 
for the serial correlation, p(xn, x +1), between a number and its immediate suc- 
cessor in a full {Ix} sequence generated by equation (1). (The symbol denotes 
"approximately equal to"). 

(2) p(xn, xn+l) - - - - 

Equation (2) is a good approximation to p(Xn X Xn+0) for X small compared to p"/2. 

For X on the order of p112 or larger, however, the approximation can fail badly, as 
an example will illustrate. 

For P = 2", X = 234 + 1, and /L 1, the correlation given by equation (2) is a 
negligible 2-34. The true correlation, however, is found by direct calculation to be a 
very significant .25, much too large to be acceptable. This is explained by the fact 
that values of X which are very large relative to P have an effect similar to that of 
values of X which are very small relative to P. This fact is completely distorted by 
the erroneous implication of equation (2) that the larger X, the smaller the magni- 
tude of the correlation. 

As a consequence, the usefulness of equation (2) as a standard for selecting 
parameter values is limited. In what follows, an exact derivation of p(X , Xn+0) 

will provide us with a correction term for equation (2) which overcomes this limi- 
tation. The derivation begins along the same general lines as Coveyou's skillful 
approach. 

4. Derivation. We shall assume throughout the derivation that X and t are 
restricted to values for which the period of the {x" sequence is P. The sequence 
therefore will consist of all integers from 0 to P - 1 (chaotically disordered), with 
each integer appearing exactly once. Let the symbol E designate an expected or 
mean value over the full sequence. Then p(Xn, Xn+0) may be expressed as follows: 

E(xn ,X nal) - [E(xn)1] 
(3) p(nx~,xn+l) - vE(xn') -[E(Xn)]2 

where 
1 P-i (P-i) 

(4) E(xn) =- E x 
Po 2- 9 

* One line of intuitive reasoning has led to a proposal that X be on the order of pI2 [3, 4]. 
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(5) E(xn2) = L Ad x2 (P - 1)(2P - 1) 
P ~~~~6 

To evaluate E(xn , Xn+l), we equate xn+l with the remainder r, in the following 
equation 

(6) XXn + u = nP + rn (n = 0, 1,*) 

where qn and rn < P are non-negative integers, uniquely determined for each Xn 
by the Euclidean algorithm. Dispensing with the subscript n in equation (6) for 
convenience, we now may write 

1P-1 P-1 

E(Xn X Xn+1) = E Xn Xn+1 = E x(Xx + iz-qP) 
(7) P X'=O P X=O 

P-1 

= XE(x2) + uE(x) -E xq. 
x=O 

Assume for the moment that A > X and let Xn, or x, in equation (6) take on 
consecutive integral values starting with 0. Then q increases from 0 to X, in in- 
crements of 1, and each q has associated with it approximately P/X consecutive 
integers x, as well as the same number of integers r. Let fq be the smallest r as- 
sociated with a given q. Then fo = ,u, and for q > 1, fq < X is given by 

(8) fq _i-qP (mod X). 

From this it follows that the fq are distinct and (rf, , , fx) is a permutation 
of the integers (0, 1, , X - 1). 

It may be shown that 

P-1 Xp2 XP 2 p2 M 2 (X + 2)PX 
E xq = 2 - 2- -2 2-2X2 X2= q + 2;2 E q = 2 2 X 222 q1 

(9) X X X 
_ 1 E f2 + X + 2jt1: - _p a 

X2 
fq 

2X2 ~rq 
- 

2E fqq 

and hence that 

P-1 xp2 XP 2 p A AP X 
xq= - -- + 2 

X=O 3 4 2 X 2 12 
(10) MP 1 P2 P2 PS 

+ 2 - 
12X 4 12X 

- 

where 

(11) S = Efqq. 
q=1 

5. An Exact Formula for p. By combining equations (3, 4, 5, 7, and 10), we may 
now write a formula for p(x, X Xn+1). In so doing we make the assumption that P 
is so large that any term whose order of magnitude is 1/P or less is negligible. 
This assumption leads to 
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1 6A A ~12 (S X\ (12)~~~~~~~~~~~~~ (12) p(\"X2 Xn+1) /X -P ( + - 4 

Since P is generally at least one billion, the approximation (-) is an equality for 
all practical purposes. 

The first two terms of equation (12) are seen to agree exactly with the approxi- 
mation for p, equation (2), given earlier. The final term of equation (12) thus 
constitutes a correction to the earlier result, and it will be interesting to examine 
this term carefully. It is not difficult to show that 

(13) X (X2 1) S X (X21) 
63 

and hence, because of the magnitude of P, 

(14) P = P X2 4 = P 

Thus, the correction term is confined to an interval extending a distance X/P 
on either side of zero. At the mid-point of the interval, when the correction term 
equals zero, equation (12) reduces to equation (2). Equation (2) also suffices 
when X is small relative to p1/2, or more precisely, when X/P << 1/X. But for X on 
the order of p1/2 or larger, the correction term may predominate and the complete 
equation (12) must be used. 

If we repeat the line of reasoning leading to equation (12) for the case , < X, 
we find that 

(15) p(Xn , Xn+1) -+ 

where 
X_1 

(16) S= Erqq q-l 

and inequality (14) again obtains. In a strict sense the notation should be modified 
to distinguish the S of equation (16) from the S of equation (11). However, the 
context (i.e., whether q > X or 4 < X) always identifies which of the definitions 
for S applies, and, in any case, the two definitions cannot give results for p different 
by more than a negligible amount. The implication of equation (15) is that equation 
(12) still applies for the case of 4 < X. For this case, however, the middle term is 
insignificant and the parameter , appears only insofar as it influences the value of S. 

6. Examples and Applications. To evaluate S for some specific cases, let U be 
the unique non-negative integer less than X for which 

(17) U-y (modX) 

and let 

(18) V= U < X 
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In what follows, A is assumed to be a positive odd integer less than P = 2 
First, suppose that X = 234 + 1. Then it may be shown* that 

(19) S -(V - V + 7)21oo. 

The referee has pointed out that equation (1) is the reciprocity formula for Dede- 
kind sums (after an elementary transformation). He has kindly supplied the 
reference to [12]. For V close to either 0 or 1 (e.g., 4 = 1), equation (19) leads to 
S 62'oo and the term involving S in equation (12) dominates. The other terms 
are negligible in comparison and equation (12) reduces to 

(20) p(Xn , Xn+l) 
I I 

( 
7 - 1) I 

which agrees with the result given earlier. 
Next, suppose that X = 218 + 1. Then, if U < 217, 

(21) S- (-2V2 + V + 5 )25 

whereas if U > 217, 

(22) S- (-2IV2 + 3V - 177)253. 

Equations (21) and (22) may be used with equation (12) to appraise different 
choices of jx. Let us examine ,g = 1 as an illustration. Then U = 1, V O. S 
( 5 )253 and 

(23) p(x,, x 1) . 2-18 + 12(2-18) ( - 2) 2-18 - 2-18 

from which we infer that p << 2-18. 
It is not correct to conclude from this evidence alone, however, that a combi- 

nation in equation (1) of P = 23, X = 218 + 1, and M = 1 furnishes an acceptable 
pseudo-random number generator. As a matter of fact, it does not [10]. For one 
thing, the first several hundred numbers generated by this combination, starting 
with xo = 0, are all less than P/2. 

Now consider X = 2' + 1. With this X, 

(24) S_(_V +V+ )2 

so that for V close to either 0 or 1, S- (5)249 and 

(25) p(x. , xn+1) 3(gM 262 - g232 ? 1)212 

Thus, when g = 1, p- 3(2-19); and when g simultaneously satisfies - (1 ? 
2-1/2)234 and U 0, p << 2-19. 

* In each of the examples discussed, special methods have been used to evaluate S, and 
the details are available upon request. The methods differ from each other somewhat, de- 
pending upon the values assumed by the parameters. It is actually possible to develop one 
general technique, a reciprocity type of reduction method, for solving all of the examples. 
S may be expressed in terms of an S', with X = P', by retracing many of the same steps which 
led to equation (12); and so on. The general technique has not yet proven as advantageous as 
the special methods in particular applications, but is of theoretical interest nonetheless. An 
elegant formulation of the general technique recently was developed by Coveyou in a private 
memorandum to the author. 
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Finally, consider X sufficiently small relative to p1/2 so that X/P << I/X. Then 
inequality (14) indicates that the correction term in equation (12) is insignificant 
compared to 1/A and therefore may be dropped. Consequently, 

(26) p(Xn Y Xn+]) - X - p ) + - 

It follows that p 1/N when g << P, whereas p << 1/N when g P(1 + 3 /2. 
Here X and pi are restricted to values which afford the full period. One such selec- 
tion of P = 2", namely X = 27 + 1 and A = 1, has been tested empirically and 
proposed as a suitable generator [1]. 

7. Higher-Order Correlations. As is pointed out by Coveyou [9], equation (12) 
can be adapted to give correlations of the {x4n sequence with lags greater than 1. 
To accomplish this, we define non-negative integers Nm and g, , both less than P, 
by the congruences 

(27) X -=X' and Mm (xm - 1)g (mod P) 

where m = 1, 2, . By applying equation (1) repeatedly, we may write 

(28) Xn+m XmXn + tm (mod P) 

which is identical to equation (1) in the special case m = 1. 
Equation (28) generates a sequence in which Xn+m is the immediate successor 

to Xn . If Am and btm are such as to make the period of this sequence P, then equation 
(12) with X replaced by Xm and g replaced by M,. may be used to evaluate p(XnX 

Xn+m). This is then the correlation with lag m of the original {fX} sequence. 
Thus, the evaluation of mth-order correlations introduces no new problems 

so long as the selection of X and ,u leads to pairs (Xm X s.m) which produce full periods. 
In this regard we note that with P a power of 2, g odd, and X _ 1 modulo 4,things 
work out well. For then gm is odd and m. 1 modulo 4 for every positive integer 
m. Thus, the sequence generated by equation (28) does have period P [10], and 
equation (12) may be used to calculate a serial correlation of any order. 
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