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Iterated Square Root Expansions for the Inverse 
Cosine and Inverse Hyperbolic Cosine 

By Henry C. Thacher, Jr. 

Abstract. Let RX = 2+2+x, Rk+1 = V2 + Rk. Then 2k /2-Rk I and 
2k 1 6 - 2 \3 + 3Rk 11/2 both converge to arecos x if x I ? 1 and to arecosh x 
if 1 < x < oo. Truncation errors for the two expressions are of the order of 2-2k and 
2-4k respectively. 

1. Introduction. The availability on several modern automatic computers of 
square root operations which are approximately as fast as multiplication or division 
encourages investigation as to the uses which may be made of this operation in 
computation. Hammer [1] has described an iterative procedure based on square 
roots for finding cube and other odd roots which converge more rapidly than the 
customary iterations, but very few other authors appear to have considered this 
problem. It is the purpose of this contribution to describe a set of rapidly converging 
square root expansions for the inverse cosine, inverse hyperbolic cosine, and hence 
for the natural logarithm. 

2. Derivation. We start from the familiar identity 

(1) +(x) = 2p(V1 V/2 + 2x) 

where 4(x) denotes either arecos x( -1 ? x < 1) or arceosh x(1 < x < oo). We 
restrict the multiple-valued inverse cosine to the branch (O < arecos x _ T-), 
the inverse hyperbolic cosine to the positive branch (O ? arecosh x), and take all 
square roots positive. Applying (1) repeatedly, we have 

(2) cp(x) = 2(2( {2+2 + 2x 21112)) = 22 (2 { 2 + V/2 + 2x 1/2 

(3) = 23 (1 {2 + [2 + V2 + 2x]112}112) 

and, after k applications, 

(4) +(x) = 2k4(-{2 + [2 + * + V2 + 2x]22} 12)k) 

where Rk contains k square roots. 
We may observe that Rk is an increasing function of x, and that for x = 1, the 

innermost square root becomes equal to -V4, so that for any k, 

(5) V <_ Rk(x) < 2 (-1< x 1) 

and 

(6) 2 _ Rk(X) (1 x < o). 

Furthermore, since for -1 < x < 1, V/2 + 2x > 2x while the contrary is true 
for x > 1, Rk(x) is an increasing function of k for I x I < 1, and a decreasing func- 
tion of k for x > 1, and thus approaches 2 as k increases. Although we have only 
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proved this limit for real x > -1, it can be shown to be true for all finite real or 
complex x. 

If we multiply both sides of (4) by 2-k, and take the cosine or hyperbolic cosine, 
we find 

(7) O '(2 -ko(X) ) - Rk 

Now both the cosine and the hyperbolic cosine may be expanded in Taylor's 
series. If we use only the first two terms of the series, and the error term, E3, we 
find 

(8) 1 4 (2(X)) +E3 Rk 

where the upper sign is to be used for the inverse cosine. If we use the first three 
terms, we have 

(9) 1 + (2-k4(X))2 (2 k(X)) 4+ E= Rk 
2 242 

Solving (8) for +(x), remembering (5), (6), and our restrictions of the values of q 

to positive quantities, we find 

(10) 4(x) = 2 ka 2- Rk+ 2E3|. 

Equation (9), a quadratic in (2-kq(x))2, has the root 

(11) (2k (x)) = | 6 - 2 V3 + 3Rk - 6E5 |. 
The second root is easily seen to give a value for O outside the specified range. 
(For I x < 1, 22k (6 + 2 N/3 +3Rk - 6E5) > 2 k(6 + 213 + 3 / ) }1 > 2 k, 

while for x < 1, -6 - 2V3 + 3Rk - 6E5 < 0). Hence, 

(12) +(x) = 2 | 6 - 2 3+ 3Rk-6E51} 

The desired approximations are, of course, (10) and (12) with the error terms E3 
and E5 omitted. 

3. Truncation Error. Inverse Cosine. In estimating the truncation error incurred 
by neglecting E3 or E5, it is more convenient to analyze the expansions for arecos x 
and arecosh x separately. For I x I < 1, (10) becomes 

(13) arccos x = 2 2 Rk+2E3=2V2 Rk + n3 

while (12) becomes 

(14) arecos x = 2 {6-2 V3 + 3Rk - 6E6} - 2c{6-2 3 + +5. 

By Taylor's theorem, expanding (13) in powers of E3, 

(15) arccos x = 2k{ V2 -R + 1 /V2 -Rk+ 2E3 E3} (O < 0 <_ 1). 

Now the error in the cosine expansion (8) is of the same sign as, and less in magni- 
tude than the first neglected term, so that 

(2k arccosx)4 
(16) 0?<E3?_! 24 
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Hence, 

(17) 1/22- Rk > 1/2V/2-R I + 20E3 

and 

(18) 0 ? 13 ? 2 (arccosx) /24V2 - Rf 

and the upper bound on rl3 is of the order of 2-2k(arccos x) 3. Expanding (14) in the 
same way, we find 

arcos x = 2k 6 -2 3+/3 }112 

(19) + 3E5/[V/3 + 3Rk - 6E5 {6 - 2V/3 + 3Rk- 6oE5}1/2 (0 < 0 <i 1) 

- 2k{6 - 2V3 + 3}1/2 + X15 

while 

(2k arccos X)6 
(20) 0 > E5r _ 720 

so that 

(21) ~ ~ ~ ? fl5 ~~~ -24k (arccos x)5 (21 ) 240 
05 - 

240 N3~+314~ 

and X5 is of the order of 2-4k. 

Thus, our two approximations have errors of opposite sign, and provide bounds 
on the true value. 

4. Truncation Error. Inverse Hyperbolic Cosine. For the inverse hyperbolic 
cosine, x > 1, and we have: 

(22) arccosh x = In (x + V/Iix ii) = 2 Rk -2 - 2E3 = 2 VRk -2 + 713 

(23) arccoshx = 2 {2V\/3 + 3Rk - 6E 5 6 6 2{2 36 }I+ 3Rk65 

Again using Taylor's theorem, 

(24) 2k VRk-2E-{2E3 = 2( k 2 -2 2 (O < ? _ 1). 

The remainder in the hyperbolic, cosine series is 

(25) E3 = cosh (2kO' arceosh x) ( arccoshx) (0 ? 0' < 1) 4! 

and has bounds 

(26) 0 <E? cosh( a (2-I arecosh X)4 
24 

so that 

(27) - 
2kE3 

_ 
2kE3 2kE3 

V/Rk-2- GE3 -VRk -2- E3 2-k arecoshx 
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Hence, -3 has the bounds, 

2-2 (arecosh x) - -2k Rk (arecosh x)3 
(28) 0 > 773 - 24 cosh (2k arecosh x) =-2 48 

In similar fashion 

( 29 ) = _2 k3E5 
{2 V/3 -+ 3Rk- 6E5 -6}112 V3 + 3Rk-6E5 

> -2 k 3E5 

(30) {2 V3+ 3Rk-Es-6}2 V3 +3Rk-6E5 

2k 6E5 
(2-k arecosh x) [6 + (2-k arecosh x)2] 

The remainder E5 is given by 

(31) E5 = cosh (2 kO arecosh x) (a6 !o ) (0? < ?< 1) 

so that 

(32) 0?< E5? cosh (2k arccosh x) (2-k arccosh x)6 
720 

and 

cosh (2-k arecosh x) 2-4k(arecosh x)5 ) e > _ 

120 [6 + (2-k arccosh x)2] 
(33) 2-4k Rk (arecosh x)5 

6 + (2-k arecosh x)2 240 

The error bounds given do not appear to be unduly conservative, and are ap- 
proached by the actual error as k increases. 

5. Roundoff Errors. These algorithms are subject to serious roundoff error when 
k is large, and, except for special cases (e.g. x = 1) are incapable of evaluating the 
functions to the full accuracy of the arithmetic being used. This is so with either 
fixed or floating arithmetic since for both algorithms, 2-2k 2(x), a relatively small 
quantity, must be calculated from the difference of two quantities which are each 
greater than one. Actual computing trials have indicated, however, that approxi- 
mately three-quarters of the total number of digits carried may be obtained cor- 
rectly, even when particular attention is not devoted to minimizing roundoff. 

6. Discussion. The algorithms have three major advantages: (a) they are simple 
to program (and rapid to calculate when automatic square root operations are 
available); (b) they require only one or three stored constants; and (c) they have an 
extremely wide range of acceptable convergence. As can be seen from the error 
bounds, these expansions converge over the entire range -1 ? x oo, and the con- 
vergence especially for (14) and (23) is notably rapid compared to the power series. 
For example, using a programmed 16-significant-decimal digit double precision 
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interpretive routine for the LGP-30, and (23), arceosh 250.001 (i.e. in 500) was 
found correct to 4 decimal places with k = 5 (6 square roots) and to 11 places with 
k = 10 (11 square roots). 

The convergence of the sequence of approximations is only first order. At some 
cost in programming effort, it would be clearly possible to increase the convergence 
by one of the standard extrapolation techniques for accelerating the approach to 
the limit. However, the excellent convergence already present makes it unlikely 
that this device would be worthwhile unless the need for high accuracy was such 
that it was essential to keep k as low as possible. 

A special case of (13), with x = -1, has been known for a long time. This 
expansion, which has the limit ir, can be obtained as one-half the perimeter of a 
2k-gon inscribed in a circle of unit radius [2]. However, the general case, and the 
expansions obtainable by retaining the fourth-degree terms in the series for cos x 
and cosh x appear to be new. 

Argonne National Laboratory 
Argonne, Illinois 

An Eigenvalue Problem Arising In Mass And 
Heat Transfer Studies 

By J. S. Dranoff 

1. Introduction. In a recent paper [1], S. Katz has considered the problem of 
catalytic chemical reactions occurring on the inside surface of a cylindrical tube. 
For the case of laminar flow of reactant through such a tube, he has shown how one 
may generate basic kinetic data for the reaction in question from easily made over- 
all conversion measurements. The interested reader is referred to the original paper 
for the details of this analysis and its application. 

In order to make use of Katz's analysis, one must have on hand the solution to 
the following Sturm-Liouville type eigenvalue problem: 

d (xdo(x)) + X 4x(l -_x2) n(X) = 0, 0 < X ? 1 
dx- dx/ 

(1) +"(x) regular at x = 0 

On (1) = 0 

where the 4?n(x) are the eigensolutions and the X, are the eigenvalues, with n = 

0, 1, 2, . .. . The first boundary condition leads, as in the case of Bessel's functions, 
to the condition n'(O) = 0. 
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