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The recent work of Siegel, Sparrow and Hallman [6] has just come to the 
attention of the author. These workers have considered this problem in the heat 
transfer context. They report values of the eigenfunctions and eigenvalues which 
are in excellent agreement with the more extensive data of the present, work. 
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Efficient Continued Fraction Approximations 
To Elementary Functions 

By Kurt Spielberg 

1. Introduction. This paper describes an application and extension of the work 
of H. J. Maehly [1] on the rational approximation of arc tan x, and of E. G. Kog- 
betliantz [2], who developed Maehly's procedure so as to be applicable to the com- 
puter programming of elementary transcendental functions. 

It is to be shown here that certain modifications, such as the introduction of 
terms which are easily computed on specific computers, lead to considerable im- 
provements. In particular, the application of the modified method to several ele- 
mentary functions will be described and corresponding final results will be given. 
Some of these approximations have been used with great success to develop sub- 
routines for the IBM 704 and 709 computers. Our experience indicates that the 
method of Maehly and Kogbetliantz, as modified below, is superior to other current 
numerical procedures. 

2. The Modified Method of Maehly and Kogbetliantz. The basic idea made use 
of by H. J. Maehly in connection with f(x) = arc tan x is to approximate the func- 
tion f(x) by a ratio of two Chebyshev sums of order k 
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k k 

f (x) =E ar Tr(Z / I + E bs - TS(X) 
/ X ~~r=O / so 

+ H(x) [I + E b8. T3(x)] f *(x) + A 

where H(x) = Z joAjk) T2k+l+j , and A is the absolute error. 
If the coefficients b, are small, which will normally be the case for -1 ? x ? 1 and 

reasonably rapid convergence of the power series for f(x), then the denominator of 
the error term is close to one over the interval of approximation and H(x) repre- 
sents the absolute error A with sufficient accuracy (compare [3]). The order k is 
chosen so as to keep A below the desired upper limit of accuracy. In order to 
evaluate the unknown coefficients a, and b8, one must know the coefficients cn of the 
Chebyshev expansion of f(x). A comparison of that expansion with (1) leads, after 
use of the identity 

(2) 2Tm(x) * T7,(x) Tm+n(x) + Tmn(X) 

to a set of 2k + 1 simultaneous linear equations in the 2k + 1 coefficients ar and 
bs. Additional equations can be established for the coefficients Aj(k) in the error 
function H(x). For even and odd functions the subscripts of (1) are changed as 
follows: even, r -- 2r s -> 2s, j- 2j, k -- 2k + 2; odd, r -- 2r + 1, s -- 2s, j -> 2j, 
k ->2k + 1. 

When this scheme was applied in practice, several additional ideas suggested 
themselves. They can be listed briefly as follows: 

a) Application of the method to functions that can be expressed as ratios of 
Chebyshev series, such as tan (rx). 

b) Use of different degree numerator and denominator polynomials in (1). 
c) Consideration of unequal intervals for two complementary expansions, such 

as sin ax and cos Ox, a + /3 = r/2. 
d) Reduction of the relative error by means of a linear correction term in a 

neighborhood of x = 0. 
e) Reduction of the error term through introduction of a new parameter that 

does not lead to a full additional multiplication. 
The first three points should become clear in the sequel and need little amplifica- 

tion. Point d is usually of concern for odd functions f(x), if it is desired to obtain 
accurate results for g(x) = f(x)/x as x -+ 0. Chebyshev methods applied to the 
function f(x) produce an approximation f*(x) such that the absolute error 
I f(x) - f*(x) I is (approximately) minimized over an interval such as -1 _ x < 1. 
The relative error of such an approximation, I f*- f /f, usually becomes intolerably 
large as x and f approach zero. The natural way to cope with this difficulty would 
be to apply the Chebyshev approximation method to g(x) rather than f(x) . Then 
therelativeerror If* - f I/f = I x g*-x - g I/x g = I g*-g I/gis nearlyminimized 
over the interval if g(x) does not vary too much. This approach, however, has the 
drawback that the improvement in the neighborhood of zero is paid for with a 
decrease in accuracy in the remainder of the interval. We have found that computer 
subroutines can easily be written so as to use f*(x) in most of the interval and 
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f*(x) + x C in an appropriately chosen neighborhood of zero. The choice of the 
correction term C will be discussed further below. 

The most important modification of the method, point e, arises if the special 
machine characteristics of digital computers are taken into account. The reduction 
of the error clearly depends on the introduction of the parameters ai and bi . Each 
new parameter allows reduction of one more error term Ai to zero, but also results 
in an increase of the number of multiplications (or divisions), M, by one. We can, 
however, achieve a compromise by restricting the last parameter to a set of values 
which may allow the correspondingly introduced multiplication to be performed in 
a manner particularly suited to the calculator in question. In the case of the IBM 
704 the multiplication might be reduced to a shift (a "cheap" multiplication with a 
power of two), in the case of the IBM 709 to a variable length multiplication requiring 
little time. Among the permissible values for the newly introduced parameter, that 
one is chosen which allows a maximum reduction of the dominant error term. In 
other words, one of the residuals in the system of linear equations for the ai and bi 
is not reduced to zero but only below a certain value determined by the desired 
accuracy. 

As an example, we may consider as our newly introduced parameter the coeffi- 
cient a5 in 

(3) f(x) = (a, T, + a3 T3 + a5 T5) (1 + b2 T2)<1 = x (Ki+K2 X2 + 2+K3) 

Evidently K2 8a5/b2 . In accordance with the above discussion we restrict K2 to 
the form 2' (n ... any integer), so that a5 becomes restricted to the set of values 
b2-2n. The integer n is chosen so as to reduce the absolute error as far as possible. 
Numerical details will be given in Section 3. 

The modified procedure of Maehly and Kogbetliantz can now be outlined for- 
mally as follows. Given a function f(x), find an approximation f*(x) 

aci Ti(x) Eai Ti(x) 
(4) f(x) = i- f*(x) = 00 

a, di Ti(x) 1 + abi Ti(x) 

To determine the coefficients ai and bi, we consider the absolute error 

f(x) - f*(x) , di T,1 + &i Ti) 

m \ o o 
(5) . + E bi Ti) A ci Ti - a} T- E di T] 

i=l i=O *=O i=O _ 

_ Edi Th + ,bi Ti) E R. E Ti (x) 
i=O *=1 / i=O 

The coefficients Ri can be viewed as the residuals, usually rapidly diminishing in 
magnitude as i increases, of an infinite number of linear equations in the s unknowns 
xi: bib2 * bmao * a, . 
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8 

(6) Ri = eij- xj + fif i-O.0 1, 2, 3, * **S-1,*. 
j=1 

The e j and fi are simple sums formed with the coefficients of the given function 

f(x), c, and di. For instance, the important special case of a polynomial f(x) gives 
rise to the following residuals: 

m 
Ro = cobo + I - ao, bo = 1 

n=1 

(7) 1 _ i < m: Ri = c, + 4cobi + If, bZ (Cn+i + C, n-) -as 
n=1 

m < i: R. = Ib (Cn+ + Ci-n) -ai n=O 

For i > 1, the term -at is omitted above. 

Usually one sets the first s residuals equal to zero so that the final error is deter- 
mined by the absolute sum of the remaining residuals. Instead of this we endeavor 
to reduce the first s + 1 residuals below a desired bound 6, by introducing the 
additional parameter a,+, 

R, = Wi - by i = 0, 1, *s-is 

x,+i= at+, = k-x, , 1 _ v_ s. 

The wi are weightfactors which can be chosen arbitrarily, usually as 0 for i < s 
and as 1 for i = s. The choice of xv and k depends on the transformation from the 
rational approximation to the continued fraction. In the example given above 
xv is equal to b2 and k is chosen to be of the form 2". 

The residuals R, clearly become linear combinations of s + 1 variables x. 
In view of (8), however, they can be expressed in terms of the first s variables and 
k. 

(9) Ri = wa= - eij-xj + ej,8+? k xv + fi, i = 0,1,2, *, s-1, 1 ? v ? s. 
j=1 

These equations can now be solved for the x, in terms of k. As a consequence, one 
can determine the residual R8 as a function of k 

(10) Xi = x,(k), i = 1, 2, ,--s, 8R = w. a = f(k). 

Finally one chooses among the manifold of permissible k, namely of those k which 
permit the replacement of a multiplication by a more favorable operation, that 
value which minimizes R,, . It is usually possible to reduce R, so substantially that 
the leading term of the absolute error becomes R,+,. Except for a bounded factor 
stemming from the denominator in (5), the final absolute error is given by 

8 00 00 

(Al) ~~~ A Elwi, T Il + I lRi Ti I E i tI. 
j=0 i~s~l i=8+1 

It is perhaps of interest to point out that, when applied numerically, this procedure 
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usually produced values of k which did not only reduce R8 but also decreased R.+, 
in magnitude. 

We finally turn our attention again to the correction term discussed in point d. 
Inspection of (11) indicates that in a sufficiently small neighborhood of x = 0 one 
can approximate A by the leading term R+,,* T8+1 R R8+1 const *x. The size of the 
interval about zero will primarily depend on the relative magnitude of the two 
lowest degree terms in the replaced Chebyshev polynomial. For instance, 
I RJ - T9 I = I Rg * (256x9-576x7 + 432x5 - 120x3 + 9x) I can be replaced by | 9 Rgx I 
for i x << 3/ 120, or for a neighborhood of zero in which 120 - R9 .x2 < w9 a5. (Of 
course, Rn . T11 must also be below the tolerable error limit.) From a practical 
standpoint, it is simplest to compute the coefficient of the linear error term as 
limn0 Vf(x) /X - f*(x) /XI 

3. Applications and Results. The method outlined above was applied to produce 
rational approximations for the development of optimal elementary function sub- 
routines for the IBM 704 and 709 computers. The resulting routines were tested 
carefully and have been found to give, within the limits of roundoff error, results 
of the predicted accuracy. 

a) Sine Approximation, 8-Digit Accuracy. 

(12) sin* ax =2(a1T, + a3T3+ a5T6)(1 + b2T2)' 4Z(K +4z2+ f?K) 

a =.3, z = .3x, -.3 ? z ? .3 

In this case (10) becomes 

R3 '-10-9.[-.28029 + 10-3._38076(?2`2-a' + 10-3 .55934)-']. 

The minimum of R3 is reached for n = -3. The correspondingly attained im- 
provement becomes apparent if one compares R3)3 with R3)- , the error without 
correction term. 

R3)n= -3 __'.5 X 10-10, R3) n= -o-- .4 X 10-9 

In the sequel we shall give the results of our computations as they were calculated, 
that is to more places than is usually warranted by the accuracy. 

a, = .14838 52081 2231 K1 = -102 X 19845 92426 192 

a3 = -10-3 .49269 95891 193 K3 = 104 X .10429 26708 144 

a, = 10W' .37911 69631 734- 24 n3cb , K4 = 102 X .50030 24548 541 

b2 = 10-3 .89864 76164 110 

a = .3, n =-3, A (absolute error) 10 1W'0 X .55, R (relative error) 

- 14 A/.2955- 10W8 X .26 

Check: 1) lim (sin* z)/z = .99999 99989 9 as z-* 0 

2) sin* (.15) = .14943 81324 75 - , sin (.15) = .14943 813... 
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b) Cosine Approximation, 8-Digit Accuracy. 

cos* 1.3x = 2(aoTo + a/I2 + a4T4 + a6T6)(1 + b/T2 + b4T4)- 

- K1 - 2Z2 + K3[Z2 + K4 + K5(Z2 + K6)>1]'1 

z = 1.3 x, -1.3 ? z _ 1.3 

ao = .30812 59625 215 K1 103 X .33947 71494 5237 

(13) a2 = -.17646 68549 891 K3 --05 X .29702 03659 0243 

a4 = lo-2 X .49379 28852 647 K4 102 X .57936 13928 3225 

a6 = -_104 X .34496 21183 611 Kr, 104 X .14546 86265 7824 

b2 = 10-1 X .20951 16328 571 K6- 102 X .48789 05740 6695 

b4 = 10-4 X .81647 83866 535 

In this example equations (8) and (10) take the form: 

a6 = 2n-2.(1.3)2_b4, Rs? 10-8( -.1490 + 2n-1.3608)(.2862 + 2n-11.667)-' 

5) n= _oo -.52 X 10 8 R5)n=o .30 X 10-9 

A (absolute error) .30 X 10-9, R (relative error) - .20 X 10-8. 

The actual computation of (13) involves the subtraction of two large numbers with 
a corresponding loss of accuracy. Hence a transformation to a more satisfactory 
continued fraction was performed 

cos* 1.3x = H1 - 2z2 + (H3 + 320Z2)[Z2 + H4 + H5(Z2 + H6)'f' 

Hi = 102 X .19477 14945 2366 H5 = 104 X .22874 43195 6870 
(14) H3 = -104 X .32763 39951 6402 H6 = 102 X .24144 89469 4287 

H4 = 102 X .82580 30199 5633 

Check: 1) cos* (0) = 1.00000 00005 

2) cos* (1) = .54030 23025, cos (1) = .54030 2306 - * 

c) Tangent Approximation, 8-Digit Accuracy. 

tan'7rx = (a1T1 + a3T3 + a/IT5) (1 + b2T2)> 

(15) = Z[K1 + K2z2 + K3(Z2 + K4)K'] + (.165)106 z 

correction term 

- _ z - 7rX _ 1r, correction term added for-.15 _ z ? .15 

a1 = .86739 36410 K1 = .18717 82697 7 

a3 = -10-1 .10096 94650 K2 = 10-2 .41503 90625 = 2-7 (.100 01)2 

a5 = -_10 .35876 64246 K3 = -10 .20070 07228 1 

b2 = - .14273 91684 K4 = -10 .24691 85502 1 

A (absolute error) = .842 X 10-8 
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The relative error is reduced by the addition of the correction term. 

Check: 1) tan* z/z = 1.00000 00001 as z -0 

2) tan* (.1) = .10033 4665, tan (.1) = .10033 467 ... 

3) tan* (.7) = .84228 83844, tan (.7) .84228 838 ... 

d) Cotangent Approximation, 8-Digit Accuracy. 

cot* 4Trx = (aT1 + a3T3)(1 + b2T2 + b4T4)>1 

= l/z[K + K2z2 + K3 (Z2 + K4)1 - .526 X 10-7] 

correction term 

(1) -4 < z < 7r, correction term added for -.15 ? z < .15 

a, = .86369 96360 K1 = 10 X .34180 16667 8 

a3 = -10- X .13359 27443 6 K2 = - .10156 25= -(.000 110 1)2 

b2 - .15019 24454 8 K3 = 102 X .25226 53989 66 

N = 10-3 X .53281 46284 2 K4 = _102 X .10432 74050 83 

A (absolute error) ^ .263 X 10o8 to .86 X 10-8 

Check: 1) z -cot* z = 1.0000000525 - .526 X 10-7 as z -+ 0. 

2) [cot* .1f-1 = .10033 46678, tan .1 = .10033 467... 

3) [cot* .15]f1 = .15113 5221, tan .15 = .15113 522... 

e) Tangent Approximation, 10-Digit Accuracy. 

tan* 47rx (aiT1 + a3T3 + a5T5) (1 + b2T2 + b4T4)Y1 

- z{(K1 + K2z2)[z2 + K3 + K4(z2 + K5)y1]} 

-Vlr < z = 7rX_4 - Z~4 

a, = .86130 00805 00276 K1 = -101 X .62993 45787 14378 

(17) a3 = - 10 ' X .15478 46841 31747 K2 = .06738 28125 
= (.10001 01)2.2-3 

a5 = 10-4 X .23254 40722 7 K3 = -102 X .17890 72313 8022 

b2= - .15503 39460 54144 K4 = 103 X .11511 65957 03706 

N = 10-3 X .87881 25568 77435 K5 = -101 X .99312 26653 90157 

It was again found desirable to transform to an equivalent approximation with 
smaller coefficients: 

tan* z = z{ (H1 + H2z2)[z2 + H3 + (H4 - 16z)(z + Ha) ]K} 

H1 = K1, H2= K2, H3= -101 X .18907 23138022 

H4 = 102 X .43783 03075 87186 H5 = K5 

A (absolute error) - .7 X 10-t, R (relative error) - .83 X 10-10 



416 KURT SPIELBERG 

Check: 1) lim (tan*z)/z = 1.00000 00000 197 as z -+0. 

2) tan* 'x = (.78539 81635 2).4/r, IT = .78539 8163 

f) Sine Approximation, 10-Digit Accuracy. 

sin* 17rx = 2(aiTi + a3T3 + a5T5) (1 + b2T2 + b4T4)Y 

= z{K1 + K2[Z2 + K3 + K4(Z2 + K5) f]} 

= z{Hi + (H2 + 6Z2)[Z2 + H3 + H4(Z2 + H5) 1r1} 

- 1Vr < z - 4 rx < _74 
= 4 =4 

a, = .36498 44708 84912 K1 = 101 X .71483 02660 86945 

a3 = _ 10-2 X .78595 99360 53327 K2 = -103 X .80285 00024 48424 

a5 = i0-4 X .30425 20592 02251 K3 = 102 X .55072 65773 70549 
(19) 1- b2 = 101 X .10166 05194 0260 K4 = 102 X .12558 99943 5548 

b4 = i0-4 X .21677 07618 0 K5 = 102 X .16632 65254 62696 

H1 = 101 X .11483 02660 86945 H4 = i04 X .21114 87369 0673 

H2 = - 103 X .37773 44209 59983 H5 = .85271 33685 84500 

H3 = 102 X .70852 59691 47400 

A (absolute error) - .4356 X 10-11, R (relative error) .863 X 10-1 

Check: 1) lim sin* z/z = .99999 99999 77 as z 0 

2) sin* (.5) = .47942 55386, sin (.5) = .47942 5539 * 

g) Cosine Approximation, 10-Digit Accuracy. 

CoS 7rx = 2(aoTo + a2T2 + a4T4 + a6T6)(1 + b2T2 + b4T4)Y 

= K, - 2z2 + K2[z2 + K3 + K4(Z2 + K5)-']-' 

- H1 _ 2z2 + (H2+ 338z2)[z2 + H3 +H4(z2 + H5)-]- 

- ?r < Z - 14xX < 47 = 4 =4 

ao = .42553 53145 92886 K1 = i03 X .33841 65629 20989 

a2 = -10- X .69950 71904 10770 K2 = -105 X .29473 89085 26762 

a4 = 10-3 X .68476 48239 11432 K3 = 102 X .57451 41742 44846 

(20) a6 = -10-5 X .17046 17065 67264 K4 = i04 X .14616 00034 97481 

b2 = lo-2 X .76660 47537 720 K5 = 102 X .48882 57695 11137 

b4 = io-4 X .11053 68440 0 

I1' = .41656 29209 89 H4 = 104 X .42283 05642 42266 

H2 = i04 X .63340 59841 2301 H5 = .39331 18492 483 

H3 = 103 X .10594 06825 2635 

R (relative error) - .5 X 101 
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h) Logarithm Approximation, 8-Digit Accuracy. 

10g2*f = Z[KO + K1*Z2 + K2(K3 + Z 21] - 2, z = -2 X\V 

2<f< 1 

(21) Ko0 101 X .18664 67623 69 K2= 101 X .13545 03944 219 

K, .19531 25 .001 100 1)2 K3 = 101 X .13293 49397 97 

A (absolute error) _ 2 X 10-8 

Several of the above approximations listed below have been incorporated in an 
Elementary Function Subroutine Package for the IBM computers 704 and 709. 

Share Distribution 
Equation Machine Number Name 

(12), (14) 704, 709 510, 507 IB SINi 

(16) 704, 709 510, 507 IB TANi 

(17) 704, 709 510, 507 IB TAN2 

(19), (20) 704, 709 571, 590 IB SIN2 

(21) 709 665 IB LOG3 

In conclusion, the author wishes to express his indebtedness to Dr. E. G. Kog- 
betliantz for his advice and guidance, and to Mr. F. S. Beckman, IBM, for the 
support of this project. 
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