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Abstract. A reliable efficient general-purpose method for automatic digital com- 
puter integration of systems of ordinary differential equations is described. The 
method operates with the current values of the higher derivatives of a polynomial 
approximating the solution. It is thoroughly stable under all circumstances, in- 
corporates automatic starting and automatic choice and revision of elementary 
interval size, approximately minimizes the amount of computation for a specified 
accuracy of solution, and applies to any system of differential equations with deriva- 
tives continuous or piecewise continuous with finite jumps. ILLIAC library sub- 
routine # F7, University of Illinois Digital Computer Laboratory, is a digital 
computer program applying this method. 

1. Introduction. A typical common scientific application of automatic digital 
computers is the integration of systems of ordinary differential equations. The 
author has developed a general-purpose method for doing this and explains the 
method here. While it is primarily designed to optimize the efficiency of large-scale 
calculations on automatic computers, its essential procedures also lend themselves 
well to hand computation. The method has the following characteristics, all of 
which are requisite to a satisfactory general-purpose method: 

a. Thorough stability with a large margin of safety under all circumstances. 
(Instabilities in the subject differential equations themselves are, of course, re- 
flected in the solution, but no further instabilities are introduced by the numerical 
procedures.) 

b. Any integration is started with only the essential initial conditions, i.e. 
there is a built-in automatic starting procedure. 

c. An optimum elementary interval size is automatically chosen, and the choice 
is automatically revised either upward or downward in the course of an integration, 
to provide the specified accuracy of solution in the minimum number of elementary 
steps. 

d. The derivatives need be computed just twice per elementary step, which is 
the minimum consistent with controlling accuracy. 

e. Any system of equations 

d = fi(X, Y1, Y2 ... **)i=1,)2,** * n 
dx 

(1) ( dy short)~d 
often written dx = f(x, y) for short 

can be treated for which the fi are either continuous or piecewise continuous func- 
tions with finite jumps. 

f. The solution is computed at (although not necessarily only at) equally spaced 
values of the independent variable x, with specifiable spacing. 
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Further useful though perhaps not indispensable characteristics of the method 
are: 

g. Enough numerical information is developed to make interpolation or evalua- 
tion of functions (e.g., roots) of the solution possible with accuracy equivalent to 
the solution accuracy. 

h. The sense of integration can be reversed. 
Characteristic a) is essential for getting trustworthy results in lengthy auto- 

matic computations because the number of elementary steps may be as large as 10O 
or 106 or more, and disturbances in unstable methods typically grow exponentially 
with the number of steps. Characteristic b) is not only a convenience but also 
insures that in the integration of intrinsically unstable equations, in which early 
errors tend to be strongly magnified, the starting errors do not dominate. Charac- 
teristic c) relieves the human being of the often difficult task of determining the 
correct interval in advance. Where the human being must specify the interval for a 
computation not to be performed by himself he tends to make up for uncertainty by 
a conservatively small interval choice. Characteristics c) and d) together thus make 
for efficient use of computer time, and the saving in computer time can easily be a 
factor of 10 or even much more in the handling of problems in which the interval 
should vary. 

In regard to the question of relating our method to previously available methods, 
we wish to make clear at the outset that it is equivalent to a reformulation of the 
method of Adams [1, p. 53-55], [2, p. 81-82] for it uses effectively the same quadra- 
ture formula as does Adams. However, the formulation and the point of view are so 
different that it is instructive and seems appropriate to explain the method starting 
from first principles, as we shall do below, rather than starting from Adams' quad- 
rature formula. 

Presently available methods may be divided into two classes: those involving no 
memory and those involving some memory, of the past behavior of the solution. 
The Runge-Kutta methods [1, p. 72-75], [2, p. 59-74] are typical of the first class, 
the Milne methods [1, p. 64-70], [2, p. 84] and the Adams methods of the second. 
It has been clear for some time that the methods with memory are superior in 
accuracy for a given elementary interval size and a given amount of computational 
labor since they permit a better approximating curve to be fitted over the elemen- 
tary interval. Our method involves such memory. In return for this superiority of 
the methods with memory we must cope with two problems quite foreign to the 
memoryless methods: how to start off, since at the beginning there is nothing to 
remember; and how to prevent the remembered numerical information from behav- 
ing unstably. 

Two further problems must be dealt with in order to implement the automatic 
choice and revision of the elementary interval, namely, choosing which quantities to 
remember in such a way that the interval may be changed rapidly and conveniently 
and developing an appropriate set of rules for controlling the interval size. Thus the 
four major problems are: automatic starting, stability, choice of quantities to 
remember and interval control logic. The last of these four is the most intricate. 

As with most methods, there exist lower and higher "order" versions of this 
method. The author prefers to use the term "degree" rather than "order", since all 
methods are ultimately equivalent to finding a polynomial of some given degree 
approximating the solution of the system of equations, and since the term "order" 
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is already standardized usage for the number of equations n in (1). We have chosen 
and recommend degree 5, which corresponds to a truncation error 0(h7) per elemen- 
tary step of length h, for large-scale digital computer operations. This represents an 
advantageous return in accuracy per step with quite large steps, while still not 
overdoing the accuracy when the choice of h is limited to inverse powers of 2, as is 
natural in a binary computer. 

The order n of the system (1) is immaterial to a large part of our discussion, so 
that we can advantageously use the simpler notation dy/dx = f(x, y) for (1), 
regarding y and f as vector-like objects with n real numbers as components. The 
independent variable x is, of course, a single real number. Whenever the multi- 
component character of y and f makes a significant difference in the discussion we 
shall so note. 

In Section 2 the choice of quantities to be remembered is discussed, in 3 the 
numerical procedure and the associated stability theory are developed, in 4 certain 
parameters of the method are adjusted for optimum stability and accuracy, in 5 
the procedure for modifying the interval is given, in 6 the characteristic behavior of 
the remembered quantities is described, in 7 error estimation is discussed, in 8 the 
automatic interval control logic is developed, in 9 automatic starting is described 
and finally in Section 10 the results of certain test problems done by this method 
are exhibited. In Appendix A are collected the working formulas and error estimates 
for degrees 3 through 6 of the approximating polynomial. Appendix B contains a 
schematic flow chart for programming the method for a digital computer, with com- 
puting time estimates. Appendix C is a discussion of control of roundoff errors in 
iterative numerical procedures. 

2. Choice of Quantities to Remember. It is immediately clear that quantities like 
differences y(x) - y(x - h), y(x - h) - y(x - 2h), etc., and/or higher differences 
would constitute a poor choice to remember, for changing the interval in terms of 
these is a cumbersome process involving much interpolation and/or extrapolation. 
(Ignoring the remembered quantities whenever the interval is to be changed and 
starting again "from scratch" would entail serious loss of accuracy and of time). 

We take our cue from the remark above to the effect that all methods of numeri- 
cal integration are equivalent to finding an approximating polynomial for 
y(x). Of the many ways of specifying a polynomial of degree m by M + 1 constants 
there is one way which is interval-independent, namely: to specify the 0th to mth 
derivatives of the polynomial evaluated at the current value of x. These particular 
m + 1 quantities specify the same polynomial no matter what the interval is, 
being in fact defined with no reference to an interval at all. They would be ideal 
from the point of view of interval modification. However, they are not suitable for 
automatic computation because the higher derivatives may vary enormously in 
magnitude and are thus not conveniently stored in a "fixed-point" arithmetic 
operation.* 

* The discussion in the present paper is limited to "fixed-point" arithmetic procedures. 
The question whether a "floating-point" version of the method could be made safe against loss 
or illusory gain of significance of the quantities in the course of a long computation, and other- 
wise trustworthy, is for future investigation. The possible freedom to store just the higher 
derivatives of the approximating polynomial and the increased freedom from scaling problems 
certainly suggest that one investigate the floating-point possibility. 
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In order to see how to modify our choice so as to cure the latter difficulty, we 
consider how the m + 1 derivatives would actually be used in the computation. A, 
typical important use is, in the first phase of the integration step from x to x + h, 
to "predict" a trial value of y(x + h) from the formula: 

y'(x + h) = y (x) + h {f(x, y(x) ) + h 
P5" (') 

(2) 
+ h tP"'(x) + jPs"(x) + h Nt 

where mn has been made 5 and P5(x) = y(x), P5'(x) = f(x, y(x)), P5" ... P5Mtt 

are the 6 aforementioned derivatives of the approximating polynomial evaluated 
at x. Formula (2) is written in the special way shown, with one factor h external to 
the { }, because we may expect f to be computed to full register accuracy on occa- 
sion, which suggests that the remaining terms in the { } be kept to the same 
accuracy; and because for the case of small h and many steps (many successive 
applications of formulas like (2)) we can minimize the accumulation of roundoff 
errors in y by keeping log (I h I-') more places in h{ I than we keep in the { I 
itself. Formula (2) in the form written then suggests that the appropriate quantities 
to store in the computer registers are, besides the always necessary y(x) and 
f(x, y(x)), the four quantities 

a(x) = h ! (X) b(x) = h P"'(x) 

(3) Kh 
c(x) -!P5""(x) d(x) = h P"" x 

We may reasonably expect these quantities to stay within register capacity since an 
appropriate choice of h will just cause the successive terms in the { } to decrease 
in magnitude no matter how large the P5(i) themselves become. Although the 
quantities (3) are not completely interval-independent, they depend on the interval 
in such a simple way that interval change involves merely multiplying each by a 
constant, and in the important practical case of a binary computer and intervals 
restricted to inverse powers of 2 the change is achieved simply by shifting the 
numbers. Formula (3) seems accordingly to be essentially the unique sensible 
choice, at least for a fixed point arithmetic procedure. 

We emphasize that the quantities y, f, a, b, c, d as they exist in the computer 
registers and appear in our discussion are formally defined from successive deriva- 
tives of an approximating polynomial, so that they always exist since an approxi- 
mating polynomial always exists, whether or not the exact solution of the original 
problem (1) has five derivatives. If the original problem involves a discontinuous f, 
the quantities a ... d tend to get large because of that, but concurrently tend to 
get small because of interval decrease, with the overall result that they stay within 
register capacity. While the existence of an approximating polynomial is assured, 
its quality as an approximation of the exact solution of (1) depends on how it is 
developed; in subsequent sections we discuss how to develop it in an optimum way. 

3. Taylor's Theorem Procedure Modified for Stability. In order to have a com- 
pletely defined integration procedure we must have rules for determining all of the 
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quantities y(x + h), f(x + h), a(x + h) ... d(x + h) when given y(x), 
f(x), a(x) ... d(x) and the differential equation (1). (The starting problem, namely 
to determine y, f, a, b, c, d at x + h given only y(x) and f(x) and the differential 
equation, is discussed below in Section 9). Consider first the ordinary Taylor's 
series formulas terminated at h6, which in terms of a, b .... read: 

y(x + h) = y(x) + hIf(x) + a(x) + b(x) + c(x) + d(x) + e(x)} 

f(x + h) = f(x) + 2a(x) + 3b (x) + 4c(x) + 5d(x) + 6e(x) 

(4) a(x + h) = a(x) + 3b(x) + 6c(x) + lOd(x) + 15e(x) 

b(x + h) = b (x) + 4c (x) + lOd (x) + 20e (x) 

c(x + h) = c (x) + 5d (x) + 15e (x) 

d(x + h) = d(x) + 6e(x) 

Here we have introduced one more quantity e(x) analogous to a ... d, which we 
eliminate forthwith by using the differential equation. The system (4) as it stands 
is incomplete, having one less equation than it involves quantities. But by identify- 
ing the second formula of (4) with f(x + h, y(x + h) ) calculated from the differen- 
tial equation, we can eliminate e(x) and get: 

y(x + h) = y(x) + h{f(x) + a(x) + b(x) + c(x) + d(x) 

+ 1 (x + h, y(x + h)) -fP]} 

f(x + h) = f(x) + 2a(x) + 3b(x) + 4c(x) + 5d(x) 

+ 1 [f(x + h, y(x + h)) -fP] 

a(x + h) = a(x) + 3b(x) + 6c(x) + lOd(x) 

+ 165 [f(x + h, y(x + h)) - fp] 
(5) b(x + h) = b(x) + 4c(x) + lOd(x) 

+ 26 [f(x + h, y(x + h)) - fP] 

c(x + h) c(x) + 5d(x) 

+61S [I(x + h, y(x + h)) -fp] 

d(x + h) = d(x) 

+ 1 [f(x + h, y(x + h)) -fpI 

where fP- j(x) + 2a(x) + 3b(x) + 4c(x) + 5d(x), the "predicted" value of 
f(x + h). 

Now the system (5) augmented by the differential equation is complete, for the 
first equation of (5) and the differential equation together constitute an implicit 
system determining y(x + h) and f(x + h); the second equation of (5) is an identity 
and the next four then determine a(x + h) ... d(x + h) straightforwardly. 

Having arrived at the scheme (5) quite directly from Taylor's theorem we enter- 
tain the possibility of using it for numerical integration. A small amount of hand 
computation using (5) establishes that it is: a) very accurate indeed, and b) very 
unstable indeed, with small disturbances growing approximately as (- 10)' in s 
steps. 
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These two phenomena are closely related. The high accuracy derives from basing 
the scheme directly and exactly on Taylor's theorem; however, just because it is so 
based it has another property, namely reversibility. If we apply (5) to go from x to 
x + h and reapply (5) with reversed h to retrace from x + h to x, we recover the 
original quantities y, f ... d precisely. Now a process reversible in this sense cannot 
be stable, for it cannot damp out small disturbances (i.e., "forget" or "lose informa- 
tion") as it must to be stable. Stated in terms of the eigenvalues of the stability 
matrix M discussed later, reversibility implies that the matrix for backward integra- 
tion is the inverse of the matrix for forward integration, which is inconsistent with 
the condition for stability, namely that for both these matrices all eigenvalues 
except one must lie inside the unit circle. (The only exception to the last statement 
occurs when the stability matrix is 1 X 1, which corresponds to the trapezoidal 
method m = 1 with no "memory.") 

We search then for such a modification of (5) as will provide stability with mini- 
mum degradation of accuracy. The following discussion will establish that a usable 
and in fact essentially optimum modification of (5) consists of replacing the series 
of six coefficients 1/6, 1, 15/6, 20/6, 15/6, 1 multiplying the [ ] by new constant 
coefficients Y = 95/288, 1, A = 25/24, B = 35/72, C = 5/48, D = 1/120 respectively 
and leaving (5) otherwise unaltered. It is interesting to note that the ratios of the 
new coefficients to the old form a rather strongly decreasing sequence: 1.98, 1, 0.42, 
0.15, 0.042, 0.0083, which reminds one of the well known technique for stabilizing 
electrical filters involving feedback by somewhat enhancing the low frequency gain 
and strongly depressing the high frequency gain. 

In searching for an appropriate modification of (5) it is inadvisable to tamper 
with the coefficients not pertaining to the [ ], and this will be borne out by later 
analysis, for these coefficients are clearly just such as to make the integration of a 
5th degree polynomial y(x) come out exact (the [ ] will vanish for y(x) a 5th degree 
polynomial). However, the coefficients multiplying the [ ] have no such unique 
significance and we are free to modify them to suit our purpose. 

To dispose of the possibility of generalizing the coefficient 1 in the second equa- 
tion of (5): So long as this coefficient remains 1 we can delete the second equation 
entirely from the considerations as being merely an identity, and we ultimately do 
just that. In the interests of generality the author has experimented some with 
modifying this particular coefficient numerically and has indeed found that any 
value other than 1 for it, beside costing an additional multiplication, degrades both 
the accuracy and the stability. 

The remaining 5 equations of (5) with the coefficients 1/6, 15/6, * 1 replaced 
by arbitrary constants Y, A, B, C, D, may then be studied for stability by introduc- 
ing a small variation of each of the 5 independent quantities (y, ha, hb, hc, hd), 
namely (by, 6ha, bhb, bhc, bhd), and studying how this latter quintuple changes as 
we integrate from x to x + h [3]. The quantity f is to be regarded as not independent 
but a function of y in virtue of the differential equation. After some calculation we 
find that the quintuple (by, hba, h~b ... had), regarded as a 5-component vector 
V(x), obeys the equation 

(6) V(x + h) = MV(x) 
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where M is a 5 X 5 matrix: 

M= 

1+ p 1 + Y(p -2) 1+Y(p- 3) Y+Y(p -4) Y+ (P- 5) 
1 A yp A-) 3P + A1-Yp 1 - Yp 1 - Yp 

Ap( 1 1 A(P - 2) + A(p - 3) + A(p - 4) 10 + A(p-5) 
1 -Yp 1+ -Yp 3+ i-Yp 6+ l-Yp 10 i-Yp 

7) Bp2 B(p -2) 1+B(p -3) 4+B(p -4) 10+B(p -5) 
1 - Yp 1 -Yp 1+ 1-Yp 4+ l-Yp 10 l-Yp 

Cp2 C(p- 2) C(p-3) 1+ C(p- 4) 5+C(p-5) 
1 - Yp 1 - Yp 1 - Yp 1 - Yp 1 - Yp 

Dp2 D(p-2) D(p-3) D(p-4) 1 +D(p-5) 
1 - Yp 1- Yp 1 - Yp 1 - Yp 1 - Yp 

with 

(8) p-h . 

We note that the 5-dimensional vector space of V and M is a different space from 
the n-dimensional space of y, f, a, etc. 

We have treated p as though it were a scalar quantity even though for n > 1 
it is really an n X n matrix h(af*/'3yj); but it is only the smallness of p, insurable by 
appropriate choice of h, which is important in our argument, not its matrix charac- 
ter. The difference between p(x + h) and p(x) has also been neglected, for it gives 
rise to errors involving one factor h more than we need consider. 

The characteristic equation 0 Xbr. - Mr. I of M turns out to be: 

0 = (1 - Yp)(X -1) 

+[2A + 3B + 4C + 5D- (1 + A + B + C + D)p](X-1)4 

(9) + [6B + 24C + 70D - (2A + 6B + 14C + 30D)p](X -1) 

+ [24C + 180D - (6B + 36C + 150D)p](X - 1)2 

+ [120D - (24C + 240D)p](X - 1) - (120D)p. 

One root of this equation, which may be found by substituting a power series in p 
into it, and which we shall call the principal root Ao, is essentially a function of p 
only, depending but slightly on Y, A, B, C and D: 

p 
e, 

6Y-3+A -(1/5)Cp6 
Xo-e + D 6! 

(10) +-49 + 105Y + 14A + (7/5)B - (14/5)C-D p7 + 

+ -+0(p8). 
D 7!1 

This is a consequence of retaining the coefficients in (5) not pertaining to the [ 
The root Xo is thus essentially a property of the differential equation system (1), 
and whether or not it lies inside the unit circle in the complex X plane determines 
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whether the subject system, as distinguished from our numerical method, is stable 
or not. On the other hand, the four further roots of (9), which we shall call "ex- 
traneous" roots, depend strongly on A, B, C, D and only weakly on p and Y; their 
location relative to the unit circle determines the stability of the integration method 
itself. These roots must lie inside the unit circle for stability of the method, and the 
nearer they are to the origin the more stable the method will be. 

4. Determination of Parameters. The parameters Y ... D are now to be chosen, 
primarily to optimize the stability of the method and secondarily, if any freedom is 
left over, to optimize the accuracy within the restriction of optimum stability. The 
author regards optimum stability as essential to an automatic general-purpose 
method, for the rapid elimination of disturbances characteristic of good stability not 
only makes an automatic starting process feasible and permits accurate integration 
across finite discontinuities of f, as we shall see below, but also minimizes the error 
due to interaction of disturbances with non-linearities of the differential equations.t 
Since there are four extraneous eigenvalues whose locations in the complex plane we 
wish to control and we have five parameters free, we can expect to have considerable 
control over stability and accuracy. What actually happens is that A, B, C, D 
determine stability and Y is left free to optimize accuracy. Thus we can arrange for 
a truncation error of 0(h7) even though we are using 5th degree polynomials, the 
explanation being that in each integration step we use both the 5th degree poly- 
nomial available at the beginning and the one available at the end of the step. 

Now it is easy to bound I p I (bound the magnitudes of its eigenvalues if it is a 
matrix) by control of h during the numerical integration process, while it is much 
more difficult actually to compute p for n > 1. Therefore it seems best and is cer- 
tainly simplest to choose Y, A, B, C, D independent of p, i.e. as absolute constants, 
in such a way that stability is guaranteed for as large a range of p as possible. This 
is substantially accomplished by considering (9) with p = 0 (whereupon Y drops 
out, indicating that it has little influence on the stability of the method) and then 
choosing A, B, C, D so that the four extraneous roots coincide at 0. Thus, we require 
(9) for p = 0 to take the form (X -1 )X4 = 0, and it does that for A = 25/24, 
B = 35/72, C = 5/48, D = 1/120. The choice of Y is then made to nullify the 
coefficient of p6 in (10), which has no effect on the stability but optimizes the 
accuracy. This determines Y = 95/288. For stability for p $ 0 we then depend on 
the fact that the extraneous roots are continuous functions of p, so that they cannot 
move very far from the origin provided p is appropriately limited. 

In order to get a better picture of the behavior of the extraneous roots as func- 
tions of p, we first note that for small p they are the roots of 

4 3 
(11) can= - 3 

as can be read off from (9) with the chosen values of the parameters inserted. It is 

t A report by E. Fehlberg [4], has just come to the author's attention. Fehlberg exhibits 
other choices of parameters which produce smaller truncation error than Adams' and the 
author's choice, bat at the expense of much poorer stability, cf. Fehlberg's tables 3 and 4. For 
m = 5 the gain in computing speed for the same error is greatest and is (1/0.0801)"7 = 1.43, 
which the author considers not worth the risks incurred with the much poorer stability. 



30 ARNOLD NORDSIECK 

fortunate that the numerical coefficient in (11) is so small, for the p"14 dependence 
of the roots is a rather strong dependence. The roots have also been computed for 
p a real number between -1 and + 1, and .these are shown in Figure 1. We see that 
stability will be guaranteed with a comfortable margin of safety if the interval is so 
chosen that p lies effectively inside the dashed curve. This boundary corresponds 
to I Yp I _ 1/8, which is a convenient form of test for a computer. 

The author has done considerable searching for other favorable choices of A, B, 
C, D with the thought in mind that if the extraneous roots never coincided they 
might move away from the origin more slowly as J p I increased, than they do 
according to (11). However, all other choices tried were inferior in point of both 
stability and accuracy. 

The choice of parameters made above seems optimum among choices restricted 
to constants independent of p. The potential advantage of a more elaborate pro- 
cedure in which the matrix p is numerically computed at every step and Y, A - - * , D 
are made chosen functions of p, implying a nonlinear process tailored to the subject 
differential equation system, is an interesting topic for future investigation, for it 
might lead to faster (though less accurate) methods of solving some classes of 
equations. 

The working equations of the method have now been determined completely and 
they are summarized in Appendix A, equations (A4). 

The working equations having been determined, the precise connection with 

lxi 

I 

FIG. 1.-The extraneous roots of the characteristic equation as functions of p f or real p, 
plotted in the complex X plane. As p departs from zero these roots depart from the origin along 
the loci shown. Loci marked + correspond to positive p and loci marked -to negative p. 
Counting outward f rom the origin along each locus, the points plotted represent in order, 
Ip I = A-, 8, -, 2x 1. The real positive extraneous root coalesces with the principal root at p= 
-0.88, producing a conjugate pair. The dashed curve encloses all extraneous root values per- 
mitted by the interval control tests, which limit Ip I to values :5 .38. 
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other methods can be deduced by ascertaining the equivalent quadrature formula 
for the method. This can be done by expressing the part h{ } of the first working 
equation in terms of past values f(x - h), f(x - 2h), etc., by repeated application 
of the working equations. We find that the equivalent quadrature formula is 

h 
y(x + h) - y(x) = {475f(x + h) + 1427f(x) - 798f(x - h) 

(12) 1440 

+ 482f(x - 2h) - 173f(x - 3h) + 27f(x - 4h) } 

which agrees exactly with the Adams formula of corresponding degree. By way of 
confirmation of this conclusion we observe that the characteristic equation for 
small variations in the Adams method coincides with (9) when the chosen values 
of the parameters are inserted into (9). 

5. Change of Interval. We indicate how to perform the three useful changes of 
interval: h' = -h, h' = Oh and h' = /-1h (where in binary computer operations f3 
is preferably taken equal to 2): 

Reversal Increase Decrease 
- h Oh /1h replaces h 

y y y 
it 

y 
f f f "t f 

(13) -a #a tra " a 
b 32b O-2b " b 

-C /3C f-3c c C 

d "4d #4d " d 

The rules for changing a, b, c, d are clear from (3). 
The simplicity of the rules for changing the interval is evident here. 
Every change of interval of any of the three types induces a disturbance in the 

system, but the disturbance affects mainly the higher derivatives and clears out in 
a few steps because of the choice of parameters. These transient phenomena will be 
described in more detail in the next following section. 

6. Behavior of a, b, c, d. A qualitative understanding of the behavior of the 
quantities constituting the method's "memory" is required in order correctly to 
design the interval control logic and the starting procedure. 

We first describe the "normal" or steady behavior which prevails when no 
transients have been induced by interval change or f-discontinuity or otherwise, 
within the preceding 4 to 8 steps or so. Then the quantities a, b, c, d "lag" behind 
the current value of x, a a little, b more, c still more, and d most, in the sense that 
they equal the "true" higher derivatives of y evaluated at points x - Oh, where 
0 < 0 < 2. This lagging behavior is related to, and is in fact a necessary consequence 
of stability. A close analogy exists between this and the "stable physically realizable 
filter" of electrical engineering theory, and likewise the causality discussions in 
physics. The indicated behavior may be established (and incidentally some formulas 
of later use for deriving the truncation error found) by assuming that a 7th degree 
polynomial y = P7(x) satisfies the differential equation exactly and that f, a, b, c, d 
are corresponding polynomials of 6th ... 2nd degree, and solving the working 
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equations (A4) for the coefficients by some rather lengthy algebra. The result is 

h h56VI 
a(X) = y"(x) - 72 L yVI(x) + 840 y 1 (x) 

2! 6! 7! 

3! VI() oo-5 VII(X) b(x) = -y"'(x) -100 yv(x) + 1110 2/3 7- y 

(14) 
3 17 

c(x) =h3 y"(x) - 52 1/2 h5 y (x) + 525 h6 

d(x) y""'(x) - 12 yvI(x) + 91 7! y (X). 

These formulas are then in error by 0(h7) for any general y which is differenti- 
able sufficiently many times. The last of the four formulas shows that d(x) - 

4 

5! 1"(x - 2h) + 0(h6), so that d lags by very nearly two steps. 

We may describe this "normal" behavior in another way, namely, by observing 
that the polynomial evaluated at x is always essentially the polynomial fitted to 
the values of y at x, x - h, x - 2h, x - 3h, x - 4h. The 5th derivative of this 
polynomial naturally agrees best with the 5th derivative of the true solution y at the 
mid-point of the fitting interval, which explains the last equation of (14). The close 
relation of our method to the Adams method also becomes clear from this point of 
view. When we advance from x to x + h the working equations in effect change the 
old polynomial fitted at x - 4h ... x into one fitted at x - 3h ... x + h. In the 
approximation that the 4th powers of the extraneous characteristic roots may be 
neglected, all disturbances clear out in precisely 4 steps, corresponding to the 
memory of the method having a "time-span" of just 4 steps. Thus, we have ar- 
ranged effectively to keep and use what Adams actually keeps and uses, namely the 
last four previous ordinates, whereas actually we keep quantities much more suit- 
able for interval modification. 

As for "abnormal" behavior of the remembered quantities, the simplest im- 
portant case of this occurs upon reversal. The quantities exhibit a hysteresis after 
reversal, most pronounced in the case of d(x) which has the most lag. The behavior 
of d in reversal is illustrated in Figure 2, which shows essentially that d stays quite 
strictly constant for four steps after a reversal, then abruptly resumes normal be- 
havior. Since what was a backward-fitted polynomial before reversal becomes a 
forward-fitted polynomial after reversal, we may say that d and indeed the poly- 
nomial as a whole "freezes", remains the same and marks time until enough steps 
have been executed for it to become normal for the current point x, then behaves 
normally. 

The other important type of abnormal behavior is the response to shock excita- 
tion. Shock excitation occurs severely in starting, when the normal a ... d are not 
known; mildly enough to be harmless in increasing or decreasing the interval, when 
the main terms but not the "lag" terms in (14) are correctly modified by the simple 
rules (13); and more or less severely whenf has a discontinuity so that the change in 
the polynomial is large in one step. Here again d(x) shows the most violent behavior 
and its behavior in all shock-excited transients is essentially an oscillation lasting 
just four steps. 
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TABLE 1 

x y f 24a 72b 48c 120d 

So 0 0 0 0 0 0 

xo + h ( 247hA A 25A 35A 5A A 

xo + 2h 
3 

+ 1)hA A -23A -69A -13A -3A 

xo + 3h (5 119 hA A +13A +45A l 11A 3A 
k2 1440/ 

xo + 4h 
7 

+ 1247)hA A -3A -11A -. 3 -A 

9 
xo + 5h -hA A 0 0 0 0 

2 

In order to become familiar with the detailed behavior of such a transient, we 
treat a simple case which approximates the general case of an isolated discontinuity 
of f with finite jump: Let y _ A _ 0 for x ? x0 and assume that a ... d have their 
normal values of zero for x ? xo . Letf =- A = constant for x > x0 and apply the 
working equations (14) five times in succession and Table 1 results. 

Evidently - a 
3 

b 
4 

c and h d are behaving like numerical approximations to the 
h 'h 2 'h~3 

"a-function" of x and its first, second and third derivatives respectively. Meanwhile 
the transient in y, represented by the terms with denominator 1440, is a decreasing 
oscillation also lasting just four steps, and the ultimate value of y is exactly what 
one would get by connecting the last point sampled at which f = 0 with the first 
point sampled at which f = A by a straight line segment. This essentially best per- 
formance in integrating across a discontinuity is unique to our choice of parameters. 
A reasonable upper bound for the magnitude of the error in y due to such a dis- 
continuity is 2 ] hA I where A is the jump in f. One can hardly do better without 
sampling in between these two points, i.e. decreasing h; but by controlling h one can 
bound this error. 

7. Estimation of Errors. In discussing errors in the solution y(x) we must distin- 
guish between the error present at the beginning of an elementary step and the 
error contributed by the execution of that step. The error present at the beginning 
of a step, sometimes called inherited error, is the net result of all the errors con- 
tributed by all the previous steps, each modified according to the action of the 
differential equation between the point of origin x' of the error and the current 
point x. Letting E(x') represent the error contributed by a step of length h taken 
at x', we can write for the inherited error at x if the integration began at xo 

x C 

(15) Et(x) = Z E(x') U Xo(x"/) 
X zXo X =X 

where Xo -e' is the principal root (10). The sum involves the summand once for 
every elementary step taken and similarly the product. Equation (15) illuminates 
the relation between inherited error and error contributed by an individual step. 



34 ARNOLD NORDSIECK 

The product in (15) may also be written in adequate approximation as: 

(16) II Xo(x") = exp (x") d 

which shows that the product is a property of the differential equation, independent 
of integration method and of interval choice. It is clear then that although by careful 
design of the method and choice of interval we may be able to reduce E(x') down 
to about half the least count in the register (but no further because of inevitable 
rounding), nevertheless such measures have no effect on (16). Consequently if A 
is the largest eigenvalue of the matrix (16) the error at the conclusion of the inte- 
gration will be in general at least about 2 1 A J times the least count. The number of 
correct significant digits may at most be preserved through the calculation if the 
magnitude of the solution increases by A or more; if not, the significance (i.e. the 
number of correct significant digits) will decrease. If a problem has A > If, where 
L is the number of base : digits in the register, then it is useless to attempt the 
problem at all by fixed point arithmetic, for there will be no correct significant 
digits left at the end of the calculation. Floating point could help if the magnitude 
of the solution increases meantime; if not, nothing will help except increased 
register length. 

We have dwelt on the above points because they show that the best that can 
be done with any method is approximately to preserve the number of correct sig- 
nificant digits in the solution, and this essentially defines a best or optimum method. 
Some of the test examples exhibited in Section 10 below show nearly complete 
preservation of significance through as many as 105 steps and with A as large as 
106 or so. 

Turning now to discussion of E(x), we assert that the contributions to E(x) are: 
a) truncation error incurred by terminating the formulas (Al) to (A5) with a given 
power of h; b) discontinuity error incurred in integrating past a discontinuity of f 
(cf. Section 6); c) iteration error resulting from incomplete iterative solution of 
the implicit equations for y(x + h); and d) roundoff error resulting from using 
registers of finite length to perform the arithmetic. 

The truncation error may be found by making the same assumptions y = P7(X) 
etc. as were made in deriving equations (14) and calculating y(x + h) - P7(x + h) 
- y(x) + P7(x), using the first and second working equations and (14). We find 
that the truncation part of E, which we call Et , is given by: 

(17) Et(x ? h/2) = 72 yv(x) + 0(h 

It is interesting to note that the truncation error is closely related to the principal 
root of the stability matrix. In fact, if we replace p arbitrarily by the operator 

h- (because the proof that p is precisely equivalent to h -is not apparent then 
dx' dx 

becomes the "true" displacement operator eh(dldx) and Xo(p) becomes the approxi- 
mate displacement operator of the method. Thus the difference Xo(p) - e' with p re- 

d 
placed by had and applied to y(x), would seem to yield the truncation error. The 

term in h8 in the truncation error was determined by exploiting this relationship, 
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yielding: 

(18) Et(x + h/2) = 72 h yvl(x) - 440 - yv"-'(x) + 0(h9) 
7! 8! 

The discontinuity error, called Ed , is bounded by the inequality 

(19) 1 Ed(x)] <I 1 h(f(x+) - f(x)) 
as we saw in Section 6. 

The iteration error, called E?, depends on how we solve the implicit equation 
system, and we choose to solve it by doing just two iterations, or more precisely: 
We calculate a first trial value y(l) (x + h) from equation (1) of (A4) with the 
[ ] term left off (the "predicted" y(x + h) in Milne's terminology); calculate 
f(1)(x + h) = f(x + h, y(1)(x + h)) and insert it on the right of the complete 
equation (1) of (A4) to give an improved y(2) (x + h); and repeat the procedure 
just once more, so that by definition in this method the final values of y(x + h) 
and f(x + h) are y(3)(x + h), respectively f(x + h, y(2)(x + h)). The reasons for 
choosing so are that f need be calculated only twice, that the convergence of the 
iterative procedure and the (related) bounds on p can be estimated from two 
iterations but not from less than two, and that the iteration error is sufficiently 
small. For the special case n = 1 (a single first-order differential equation) one can 
do better by solving the implicit system by interpolative methods with the same 
number of computations of the derivative; for general n, however, one would have 
to compute the derivatives 2n times at least in order to apply interpolative methods, 
which we regard as uneconomical. The convergence is determined by the equation 

( 20 ) y(3) _ y(2) _ -p ( (2) _ (1) y _ 95 
(20)~~~~~~~~~~~~8 

and the "iteration error" in y(x + h) by 

(21) Ej = y(3) _ 
y(- 

) = ( yp)2 (y(l) _ 
yO) 

y A 
Y3p2h6yvl(X) 

which is proportional to h8 with a small coefficient so long as I Yp I < 8 as we shall 
require, and is therefore overshadowed in general by the truncation error. Equations 
(20) and (21) follow from iterative treatment of equation 1 of (A4). 

The roundoff error E, , finally, is determined by the care with which both the 
computation of derivatives and the computations of (A4) are done, and with 
sufficient care can be as small as about 2 the least count in the effective register used 
and approximately statistically independent from step to step. The author has 
found it best to keep logo( h 1i1) extra "guard" digits in y, above and beyond the 
number kept in f, a, ... d, in order to minimize the accumulation of roundoff 
errors in y when the number of elementary steps is large. 

8. Automatic Interval Control Logic. In order to describe the interval control we 
must first outline the 3 stages in which a step x -> x + h is performed. Stage 1 con- 
sists of "predicting" all six quantities y, f, - - d at x + h, i.e. applying equations 
(A4) without the [ ] terms, using a tentative value of h. The first tentative value 
of h actually tried is the value which was accepted in the last previous step or the 
next larger value if the conditions (given below) for increasing h were fulfilled. Note 
that Stage 1 is exactly reversible in a digital machine, so that if h later turns out to 
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be wrong the beginning values of y ... d can be exactly recovered without the 
need for additional registers for saving them. Stage 2 consists of solving the implicit 
equation system for y(x + h) and f(x + h) by iterating twice as explained in the 
preceding section. This stage is not exactly reversible and 2n registers are therefore 
provided for saving the beginning values of y and f. At the conclusion of Stage 2 
enough information has been developed to decide whether the interval tentatively 
being used is small enough; if it turns out to be not small enough the beginning 
values of y ... d are recovered, the interval is reduced (by a factor ,f' = 2 in a 
binary computer) and Stage 1 is again entered. If the tentative interval is found 
adequate we proceed to Stage 3, which consists of "correcting" a, b, c, d by adding 
the [ ] terms. 

Two tests are made at the conclusion of Stage 2 and failure of either signifies that 
h is too large; the two tests are respectively 
(22a) |jy(3) - y(2) Imax < j I 2 _ - Y1 Imaax 

and 

(22b) I fi(x + h) -foP [max < $e/l hI 

where e is a specifiable positive integer and "max" means the largest of the n 
components i = 1, 2, .- n. It is clear that these tests are first possible at the 
end of Stage 2, since they involve quantities developed only in that stage. While the 
tests are being made it is also determined whether both tests are "over-satisfied", 
i.e. so well satisfied that the next larger h would likely also satisfy them, and if so 
the interval may be tentatively increased for the next following step. 

Satisfying test (22a) insures that the largest eigenvalue of p does not exceed 
0.38 in magnitude (cf. equation (20)) and, therefore, that the stability is good 
(cf. Figure 1) and also that the iteration error is small enough to be overshadowed 
by the truncation error (cf. equation (21)). The test is not formulated in the ideal 
way, which would be to require the Euclidean norm of the difference vector to 
decrease by k; instead we require that the largest component of the difference vector 
decrease by at least k, which is equally effective in insuring convergence, works for 
any order n, and requires less computation and less registers. 

Satisfying test (22b) then has the effect of roughly bounding the truncation 
error and the discontinuity error in such a way that the accumulated error in inte- 
grating a standard distance Ax (which we take equal to 1) is independent of the 
elementary step-lengths used and about equal to fie. In effect, instead of having to 
specify the elementary step-lengths to be used, the programmer tells the com- 
puter he wants the eth digit in y to be correct after integrating a unit distance along 
the x axis and the computer is expected to choose the elementary intervals to achieve 
this result most economically. Note, however, that in this connection the discussion 
of preservation of significance for unstable equations given at the beginning of 
Section 7 must be kept in mind. 

Test (22b) is derived from equation (17) by the following rough argument. 
We divide the interval (xo, xo + 1) into subintervals in such a way that within each 
subinterval h is constant. Then summing (17) over the kth subinterval gives: 

(23) gk t E,(x) _ | yV dx 70 (yVl -V. 
X==Xk 70 70 
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Now the computation provides an estimate of h6yVI, namely, h[f(x + h) - fi], 

as may be deduced from the 6th equation of (A4). We use this estimate to bound 
h6yVI for all x by requiring satisfaction of test (22b) in every elementary step. 
Thus h6 I yVI I < g' and the accumulated error is, roughly speaking, bounded by 

(24) 1 E 8k I < no. of subintervals (24) 
~~~~k70 

which is not likely to be much greater than ye. We see also that the general effect 
of bounding h6yVI is to cause each part of the total integration interval to con- 
tribute to the error in proportion to its length, which tends to minimize the total 
number of steps to achieve a given accumulated error. The argument is necessarily 
somewhat crude, for we cannot do what one would ideally like to do, namely, 
bound h6yVII, because there is no estimate of it available (without increasing the 
degree of the method). Test (22b) also bounds the discontinuity error, equation 
(19), for a discontinuity if f clearly appears directly in [f - f1, so that bounding 
hf - f] just bounds (19). 

In addition to availability of an estimate there is a further practical reason for 
formulating test (22b) in just the way shown, at least in a fixed point arithmetic 
operation, namely, that it permits the widest possible range of choices of h without 
either member of the inequality falling outside register range. If one wants to inte- 
grate across large discontinuities of f and still be free to demand accuracy of the 
order of the least count, it is clear from (19) that h must be reducible to or near the 
least count; on the other hand, for maximum size steps when f varies slowly and 
smoothly h must be increasable to or near the greatest count of the register. In 
practice the author has had the interval vary all the way from 2 2 to 2 39 in a 39 
binary digit machine. 

In the main then, the interval is selected by requiring it to be the largest interval 
satisfying both tests (22a) and (22b). However, four minor modifications of this 
basic rule are introduced in order to improve the usefulness and efficiency of the 
method and the smoothness of the automatic interval control, as follows: 

Since the programmer cannot predict what intervals will be used he is given the 
privilege of specifying a maximum interval ho, so that he has assurance that the 
solution will be available at least at the points xo + (integer)ho. The automatic 
interval control then includes a feature preventing an increase in the interval 
whenever such increase would result in skipping over one of the above points xo + 
(integer) ho . 

Next, when any considerable amplitude of shock excitation has occurred it seems 
best, judging from Table 1, to choose the interval at the onset of the shock, then 
leave it unchanged until the transient due to the shock has subsided. In fact, if the 
interval is changed while the strong transient is still present this interval change 
itself results in a new shock excitation, and the interval control tends to become 
erratic in the sense that the interval is reduced too much and for too long, a phe- 
nomenon which the author has observed experimentally. The interval control itself 
contains feedback loops, we may say, which can cause erratic behavior, although 
not genuine instability because the computer takes refuge in reducing the interval 
in response to any uncomfortably large disturbance. The main rule, if not modified, 
leads to just such behavior because, as we see from the last column of Table 1 
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the change in d is 4 to 6 times greater in steps subsequent to the first step after 
onset of the disturbance than in the first. To avoid this misbehavior the computer 
is programmed to recognize the characteristic A, -4A, +6A, -4A ... pattern 
and to leave the interval unchanged on the 2nd, 3rd and 4th steps provided they 
conform to this pattern within certain tolerances. This effectively prevents the 
interval control from interfering with the expeditious elimination of transients and 
results in preserving the ideal accuracy and speed represented by Table 1. 

Another form of undesirable interference from interval control occurs in connec- 
tion with reversal. Suppose that reversal has just occurred and that test (22b) is 
dominant in determining the interval, as it often will be. From Figure 2 we see that 
just after reversal d stays constant for 4 steps. This means that (22b) will be over- 
satisfied and the interval will be increased, whereas it should clearly not be increased 
since we are retracing steps for which the interval was presumably already correctly 
chosen earlier. The subsequent behavior would involve an unusually large shock 
when the "slack" in d is eventually "taken up" and an unnecessarily large interval 
decrease, again a phenomenon the author has observed in practice. The remedy for 
this misbehavior is simple: we program in a rule preventing interval increase for 
the first four steps after any reversal. 

Finally a rather interesting type of misbehavior can occur when f tends toward a 
constant or indeed toward any 4th degree polynomial after an earlier more violent 
behavior which required a small interval. In these circumstances we want and 
expect the interval to increase rapidly, but if the parameter 83e of test (22b) is very 
small, say only a few times the least count, then such increase may be prevented 
entirely by persistent roundoff noise in the "remembered" quantities. If f tends 
asymptotically to a 4th degree polynomial d should tend to a constant and 
[f(x + h) - f] should tend to 0. What happens then is that so long as roundoff noise 
persists either (22b) is barely satisfied and the interval is not increased, or if (22b) 
is oversatisfied and an interval increase is attempted the roundoff noise in d is 
magnified by a factor 4 according to (13) and causes test (22b) to fail on the next 
step. Now, unless special measures are taken, the roundoff noise can indeed persist 
and prevent interval increase indefinitely. Thus we may get into (and the author 

has actually got into) the absurd situation of taking 4000 steps to integrate dy = 0 
dx 

from x to x 1 (provided was non-zero for x < 2). The remedy for this mis- 

d 

_. x 

FIG. 2.-Hysteresis behavior of the "remembered" quantity d. The dashed curve is the true 
value ofd(x); the solid curves show the behavior of d in the computation. 



NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS 39 

behavior is not modification of the rules for interval choice, but a peculiar, carefully 
chosen rounding procedure for the multiplications by A, *-- D involved in the 
working equations so as to guarantee that roundoff noise will disappear in a finite 
(and minimum) number of steps just as other transients must and do because of the 
stability. The discussion of choice of rounding is rather long and is also of interest 
for other iterative procedures in numerical analysis, therefore, it is given sepa- 
rately in Appendix C. 

The main rule amended by the four modifications just described provides a 
stable, non-erratic and generally reasonable behavior of the interval size in all 
cases which have been investigated, and the cases investigated were purposely 
chosen extremes in which the interval had to vary rapidly and widely. The interval 
still does not increase as fast when it should increase as it decreases when it should 
decrease, but this is hardly avoidable since both the finite rate of clearing of tran- 
sients and the requirement of not skipping over the points xo + (integer)ho act to 
delay interval increase. 

If, when h has been reduced to the least count, test (22b) still fails, a programmed 
stop is encountered. Almost any major malfunction of program such as overflow 
in the computation of derivatives or elsewhere leads quite immediately to this 
programmed stop because of the extreme sensitivity of test (22b). 

9. Automatic Starting. The essential idea which makes automatic starting feasible 
is that if we set off with entirely abnormal values of a, b, c, d, say putting 0 for each 
of them in the absence of any evidence as to their normal initial values, then upon 
integrating a few steps they will assume approximately their normal values if the 
stability is sufficiently good. Such a method of starting has the advantage of using 
mostly the normal integrating program, which has to be supplied in any case, 
requires very little extra programming of special nature, is of use only during 
starting. Since a modern computer can execute at least about one step per second 
in even rather complicated differential equation problems, the start can be accom- 
plished blunder-free and accurately in a matter of seconds or at most minutes. 

Several complications must be dealt with in providing a satisfactory automatic 
start: the proper interval for the first step forward from xo is not known in advance 
any more than are a, b, c, d. There is a certain degree of incompatibility between 
automatic starting and interval changing since the starting essentially involves 
eliminating a very large transient and, as we saw in the preceding section, changing 
the interval during a large transient can lead to erratic interval behavior. In any 
case, application of test (22b) during the first few steps of the starting process 
would be meaningless since the test was derived on the assumption that a ... d 
had nearly normal values; this is illustrated by the fact that when a, b, c, d are zero 
the quantity Ff(x + h) - f' is 0(h), not 0(h5) as it normally is. Finally, although 
one would ideally like to use points to the left of xo for starting, corresponding to 
fitting a polynomial to the left of xo and thus obtaining what we have called normally 
lagging values of a(xo) . 

- * d(xo), this cannot be done because it would imply that 
f is defined to the left of xo, as it may not be. 

The detailed schedule of the starting procedure will now be described and in the 
process the way in which the complications listed above are dealt with will become 
clear. The overall objective of the starting procedure is to fit a 5th degree poly- 
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nomial for y to the points xo , xo + h/2, xo + h, xo + 3h/2, xo + 2h, thus determin- 
ing a(xo), b(xo) ... d(xo), where h is the correct interval (also to be determined) 
for the first step xo -* o + h. 

First we set the initial values y(xo) = yo aside for safekeeping, set a ... d 
equal to zero and do a tentative step forward xo xo + ho , where ho is the maximum 
interval permitted. Test (22a) (but not (22b)) may now be applied since its opera- 
tion is essentially independent of whether a ... d have their normal values. If 
(22a) fails the interval is reduced, the beginning values at xo are recovered and a 
shorter tentative step forward from xo is taken, the program used here being just 
the same as in normal integration. This process continues until an h has been found 
which satisfies (22a). 

When (22a) has been satisfied three more steps forward are taken, followed by 
a reversal and four steps back to xo , all eight steps being taken at a constant inter- 
val. The reason for taking just four steps either way is that it provides just enough 
information to determine a 5th-degree polynomial. 

We are now back at xo with a value of y somewhat in error but with first approxi- 
mations for a ... d which are already good to a fraction of a percent because of the 
high degree of stability of the method. The correct value of y(xo) is reinserted, the 
sense of integration again changed to forward and another four steps forward and 
four steps back to xo are taken, all at the same constant interval. 

During the last backward step listed (the 16th step of the starting process) test 
(22b) is activated, for now the quantities a ... d are so nearly normal that this 
test is significant. Test (22b) must be made neither too early during the starting 
process, for then [f(x + h) - f] is not yet 0(h5); nor too late, for as the process of 
integrating four steps back and forth is continued, [f(x + h) - f'] tends to zero 
in any case (refer to the hysteresis behavior of d described in Section 6). Thus 
there is a sort of psychological moment for doing test (22b) during the starting 
process. The author has found by "experimental mathematics" that [f - fP] is 2 to 3 
times larger on the 16th starting step, for all equations and all h's, than it is in the 
ultimate normal integration process. Thus, applying the test at this point results in 
a slightly conservative initial choice of h. 

If (22b) is not satisfied the interval is reduced and we go back to the very begin- 
ning of the starting process. If (22b) is satisfied, yo is reinserted, the sense of inte- 
gration is changed to forward and the starting process may be considered almost 
completed. In fact, for all cases except those with very high accuracy requirements 
and very unstable equations the above process provides a satisfactory start. In the 
exceptional cases one can do a little better, typically a factor of six in the initial 
truncation error, by extending the starting schedule to include four more steps 
forward and four back at half the interval eventually to be used (making 24 starting 
steps in all after both tests are satisfied) and we actually take these extra eight steps 
in order to be quite sure that errors attributable to starting are less than the normal 
running truncation error. More precisely, after test (22b) is satisfied during the 
16th starting step, we reinsert yo, change the sense to forward, halve h, integrate 
forward four steps, reverse, integrate back four steps to xo, reinsert yo, change the 
sense to forward, double h and now regard the starting process as complete. 

The chief effect of performing the last eight starting steps at a reduced interval 
is to reduce the amount of lead in a, b, c, d, which is beneficial because they should 
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lag, as they would if we had used a backward fitted polynomial. In any event, the 
truncation error in the first step after starting as above is less than normal. 

Note that we have avoided ill effects due to changing interval during a transient 
by insisting that if any starting step at all is taken with a given interval h, at least 
eight are taken without changing h. 

The transients during the early stages of the starting process are often large 
enough to cause overflow of the computer registers, and it is interesting to observe 
that such overflow will do no harm, for test (22b) is a very sensitive test and will 
almost certainly be violated if there are any previously occurring overflow errors. 
When this test is violated the computer simply discards all its previous computa- 
tions, including any overflow errors, and starts afresh with reduced interval. The 
author has observed this effect many times, always without ultimate consequences. 
Persistent overflow caused by incorrect scaling of x, y or f is of course another mat- 
ter, but one which comes to light very quickly in the form of the programmed stop 
mentioned earlier. 

10. Test Problems Done by This Method. The differential equation problems 
used to develop the program and to rectify programming errors were those for the 
sine function and the exponential function. The normal truncation error for these 
"well-behaved" problems was found to agree with (18). 

A test problem to exercise the automatic variable interval feature thoroughly 
and to verify the behavior for discontinuous f was then devised as follows: 

(25) dy _o for x x-2 1 >! 2-31 
2d =\25 for x - |I < 2-3 

to be integrated from 0 to 1 with ho specified as 2-8 and #-' specified as 2-3. This 
involves having the computer search the x-axis efficiently for an extremely narrow 
region in which f # 0, finding the area under the curve in this narrow region very 

TABLE 2 

Steps h X Y .22o Correct" y 220 

0 2-8 0 0 0 
157 2-38 1/2 - 2-31 0 0 
169 2-32 1/2 .015 564 .015 564 
176 2-38 1/2 + 2-31 .031 149 .031 128 
370 2-8 1 .031 128 .031 128 

TABLE 3 

Steps h x y * 20 Error 

0 2-8 -1/2 0 
202 2-31 -~2-30 .098 177 .000 002 
214 2 0 .196 352 .000 003 
227 2-32 2-30 .294 527 .000 003 
505 2-8 1/2 .392 700 .000 001 
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accurately and then searching the rest of the x-interval at high speed again. The 
performance on problem (25) is shown in Table 2. 
The "correct" y means the exact area of the figure obtained by joining the consecu- 
tive pair of points sampled, with h = 2 38, at which f changes, by a straight line. 
The interval actually increased 64-fold temporarily between corner and center of 
the curve. The somewhat slower recovery of the interval on the increasing-interval 
side is exhibited in the difference between 194 steps from x = 1/2 + 2-31 to x = 1 
and 157 steps from x = 0 to x = 1/2 - 2-31. The recovery of the interval to ho = 2-8 

at all is evidence that roundoff noise does not persist in the "remembered" quantities. 
A test problem similar to the above with a very narrow but smooth analytic 

curve was also treated: 

(26) dy = 27 (230)2 
dx x2 + (2-30) 2 

to be integrated from x = -1/2 to x = + 1/2 with ho specified as 28 and j 

specified as 2 32. The result of this computation is given in Table 3. 
The interval evidently did not have to decrease so much in this case because of 

the smoother curve to be integrated. The same comments in regard to increasing h 
apply here as in the previous example. The accumulated error is much less than 
2-32 because of the simple symmetrical character of the curve being integrated. 

Next, a typical unstable differential equation was treated: 

(27) dy _ 20y. = 0 at xo = 2 

dx x' YO 2 

to be integrated from x = 1/2 to x = 1 with ho = 24 and 2-e = 2 Results are 
given in Table 4. 
This illustrates the quality of the starting process in keeping the early truncation 
error small, a very important.consideration in this case because such early errors 
are ultimately magnified one millionfold. Six significant decimals are preserved 
correct through 63 steps, in each of which the solution increases by 25 per cent on 
the average. The final error exceeds 2-25 because significance cannot increase. 

Each of the above tests required only 3 to 15 seconds of computer time, and 
some sort of longer test seemed appropriate. As such the author chose Bessel's 
differential equation of order 16, and in particular, to find J16(z) by integrating 
from z = 6 to z 6000. In this range the function begins very small, increases 
monotonically and rapidly over 200,000-fold, and then makes almost 1000 complete 
oscillations. We put z = 213x and ho = 2-13 and A-e = 2 23 and 2-28 respectively, for 
two tests. Tables 5 and 6 show the results of this computation. 

TABLE 4 

Steps x y Error 

0 .50 .000 000 476 837 
1 .507 812 5 .000 000 650 187 1 

63 1.0 .500 000 546 694 ! .000 000 55 



NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS 43 

TABLE 5 

(I = 2-23) 

Steps z J16(Z) Error J'16(z) Error 

0 6.0 .051 201 950 .052 986 480 
1 6.125 .051 633 713 .0"l .053 963 765 .Oll1 

77 16.0 .177 453 370 .060 177 .062 487 955 .060 066 
93 18.0 .261 082 210 .050 266 .003 519 524 .080 005 

109 20.0 .145 179 990 .060 150 - .116 956 059 - .0O0 118 

49 005 6132.0 .004 126 972 -.053 498 .009 311 583 
49 021 6134.0 .006 748 858 -.050 809 -.007 627 018 
49 037 6136.0 -.009 741 657 .054 174 -.002 961 758 
49 053 6138.0 .001 359 819 -.052 666 .010 089 144 

TABLE 6 
= 2-28) 

Steps z J16(Z) Error J'16(Z) Error 

0 6.0 .061 201 950 .052 986 480 
1 6.125 .011 633 713 .0"1 .063 963 765 .0th 

99 16.0 .177 453 297 .060 104 .062 487 925 .050 036 
126 18.0 .261 082 096 .060 152 .003 519 520 .010 001 
156 20.0 .145 179 923 .060 083 -.116 956 010 -.060 069 

98 700 6132.0 .004 130 418 - .060 052 .009 314 069 
98 741 6134.0 .006 749 685 .060 018 -.007 631 186 
98 773 6136.0 -.009 745 792 .060 039 -.002 960 774 
98 805 6138.0 .001 362 434 -.060 051 .010 092 495 

Some of the properties of the automatic interval control are well illustrated by 
these two tables. In spite of our asking for less than full register accuracy, the com- 
puter starts accurately enough and with a small enough interval in both cases so 
that the initial truncation error is half the least count, for it recognizes via test 
(22a) that early errors may be magnified by the instability of the differential equa- 
tion itself. The ultimate error is somewhat but not much larger than asked for, as 
it must be expected to be because of significance considerations. The interval is 
halved over most of the range and the error drops by just about 2 as between 
Table 5 and Table 6 (due allowance being made for the change of phase of the 
error between the two calculations). In the calculation of Table 6 we end up with 
almost as many correct significant figures as were given initially. A further increase 
in e (and in computing time) would presumably improve the preservation of signifi- 
cance a little more. 

We emphasize that the above treatment of the Bessel equation is not claimed to 
be a good way of calculating Bessel functions, but was chosen purposely to illustrate 
how the method handles a rather "ill-behaved" problem. 
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Appendix A. The working formulas and truncation errors for degrees m = 2 
through 6 are collected here. 

m = 2 
y(x + h) = y(x) + hff(x) + a(x) + [f(x + h) -fv]} 

(Al) ft = f(x) + 2a(x) 
a(x + h) = a(x) + f(x + h)-fv] 

E 1 h4 ylV 

y(x + h) = y(x) + h{f(x) + a(x) + b(x) + [f(x + h) -fP] 
ft = (x) + 2a(x) + 3b(x) 

(A2) a(x + h) = a(x) + 3b(x) + I f(x + h) -fp] 
b(x + h) b(x) + If(x + h)-p] 

Et= (25/6) h yv 

y(x + h) = y(x) + h{f(x) + a(x) + b(x) + c(x) + 2,&[f(x + h) -P11 
fP = f(x) + 2a(x) + 3b(x) + 4c(x) 

(A3) a(x + h) = a(x) + 3b(x) + 6c(x) + flUf(x + h) - fv] 
b(x + h) = b(x) + 4c(x) + f3(x + h) -fP] 
c(x + h) = c(x) + A ff(x + h) - fp] 

Et= (27/2) 6- y 

m=5 
y(x + h) = y(x) + h{f(x) + a(x) + b(x) + c(x) + d(x) + -Aff(x + h) fP] } 

fP = f(x) + 2a(x) + 3b(x) + 4c(x) + 5d(x) 
a(x + h) = a(x) + 3b(x) + 6c(x) + lOd(x) + t4f(x + h) - fp] 

(A4) b (x + h) = b(x) + 4c(x) + lOd(x) + HUf(x + h) - fP] 
c(x + h) = c(x) + 5d(x) + 4Lf(x + h) - fP] 
d(x + h) = d(x) + bLf(x + h) -fp 

Et = (863/12) h yVII 

m =6 

y(x + h) = y(x) 
+ hIf(x) + a (x) + b(x) + c(x) + d(x) + e(x) 

+ 'C'tUJfU(x + h)-.ft]) 
fP = f(x) + 2a(x) + 3b(x) + 4c(x) + 5d(x) + 6e(x) 

a(x + h) = a(x) + 3b(x) + 6c(x) + lOd(x) + 15e(x) 
+ IJ[f(x+h) -P] 

(A5) b(x + h) = b(x) + 4c(x) + lOd(x) + 20e(x) 
+ Uf(x + h)-fP] 

c(x + h) = c (x) + 5d(x) + 15e (x) 
+ flf(x + h) -fP 

d(x + h) = d (x) + 6e (x) 
+wafU(x+h) -f] 
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e(x + h) = e(x) 

+ A U(x + h) - fP 

h VIII 
Et = 513 8 Y = 8! 

Appendix B. The flow chart (Figure 3) presented here is probably in terms which 
are general enough to apply to most stored-program computers. As shown, it pro- 
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Double h -I 
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FIG. 3.-Flow Chart for one elementary step of integration. 
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vides for one elementary step of integration per entry into the routine, so that a 
master program can supervise the general course of the computation with complete 
flexibility. It also appeals to an "auxiliary subroutine" (closed) to calculate f(x, y) 
given x and y, for complete flexibility as to what system of differential equations is 
being treated. The parameters which must be supplied are: the order n, the location 
of the auxiliary subroutine ho, the accuracy parameter e, and the location of a 
working storage of 2 + iOn memory locations. The working storage contains a 
location for xo, one for x and, for each i(i = 1, 2, ... n), 10 locations containing 
respectively yi, fi, as, bi, ci, di, guard digits for yi, fiP, yi', and yi at the beginning 
of the current step. The location normally containing guard digits is used for pre- 
serving the initial y? during starting. At the conclusion of the starting process this 
location is set to I so that when a double precision increment-addition is made to 

ys, the normally rounded ys will appear in the first of the 10 registers for the use of 
the auxiliary subroutine. 

The computing time per normal elementary step in this method is about 30n 
multiplication times (21n milliseconds on the Illiac) plus twice the time required to 
calculate the derivatives. There are 6n actual multiplications performed, the re- 
mainder of the 30n being accounted for by additions and "housekeeping". Abortive 
integration steps, i.e. those partially done and then undone because of test failures, 
require only 2n actual multiplications but about 20n multiplication times plus 
twice the derivative calculation time. The starting process is clearly the equivalent 
in time consumed of not less than 24 normal step times. 

These figures are for a computer without special address modification features, 
and the housekeeping time may be expected to be rather less where address modifi- 
cation features are available. 

Appendix C. Here we discuss the choice of rounding procedures to guarantee 
against persistent noise induced by rounding, in an otherwise stable iterative arith- 
metic process, i.e. a process producing a convergent sequence when applied in the 
real number domain. Although we are not able to state a general recipe guaranteed 
to work in all cases, we can cite a qualitative principle which clearly always tends to 
improve the persistent noise behavior and which leads to a guaranteed solution in 
our particular problem of rounding the multiplications in (A4). 

If multiplications and divisions are rounded in the normal way, namely, by 
replacing any number which is a fraction in terms of the least count, by the nearest 
integer in terms of the least count, we do not in general get the resulting sequence of 
integers converging to a unique limit, as can be seen in terms of a simple example. 
Consider the process Xn+1 = MXA + b, where the x's are real numbers and m and b 
are constants with I m I < 1. The sequence { x,} obviously converges and converges 
to b/(l - m). When iterative processes of this sort are done numerically the limit- 
ing value is not generally known in advance, the objective of the process being in 
fact usually to find the limiting value. Accordingly we reformulate the problem in 
such a way that b does not appear: let yn = Xn- x.-, so that yn obeys Yn+1 = mfn 

and tends to zero. Then we further reformulate so that the quantity eventually to 
be rounded in some sense, is the change in magnitude of y in an iteration. Spe- 
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cifically, we write 

(Cl) Y,+1 = AYn I ( | )Y, = AYn T AY. 

according as m > 0 or m < 0. Observe that 0 < , < 1. 
The digital (integer) process corresponding to the real number process (Cl) 

involves rounding the product ,UYn to an integer according to some rule. Using an 
asterisk to denote a quantity integral in terms of the least count, we have for the 
digital process: 

(C2) Yna+ = Y(yn* [-Y*]) 

where [ ] means some sort of rounding. 
Normal rounding causes most of the sequences generated by (C2) to misbehave. 

If ,u = - e for example, then it is easy to verify that under normal rounding 
rules an initial yo* = 0 leads to the sequence 0, 0, 0, * ; initial yo* = 1 leads to 1, 
?1, 1, ?1, - - - ; all other positive initial yo* lead to 2, 4? 2, 2, ?2 ... ; and simi- 
larly for negative initial y*. This general sort of misbehavior is not peculiar to the 
value of u chosen for illustration, but is typical of most A's. In the formulation (C2), 
however, the source of the difficulty is easy to discern: it is merely that the term 
[juys*] normally rounded may often vanish when yn* does not, so that the magnitude 
of yn* may "get stuck" at a non-zero value. 

The difficulty is entirely removed in this simple example by redefining the 
rounding process so that 

(x for x exactly integral 
(C3) [x] _integer nearest (x + 2) for x positive non-integral 

integer nearest (x - ') for x negative non-integral 

We term this special kind of rounding "rounding away from zero," for it consists 
of moving the number x away from the origin just far enough to make it integral. 
So defined, [Ayn*] does not exceed yn* in magnitude, is of the same sign as yn* and 
does not vanish unless Y.* vanishes. Thus, all integer sequences generated by 
(C2) must now converge to 0. 

The general principle is accordingly that if we can formulate an iterative digital 
process so that the quantity to be rounded is a correction subtracted from the 
previous value of an integer variable intended to converge to zero, as in (C2), then 
the quantity to be rounded should be rounded generally away from zero. In more 
complicated cases where several integer variables are involved the correction (in 
the above sense) to each may be a function of all the variables; but still it should be 
rounded away from zero. 

Our particular problem consists of rounding the multiplications A[ ], B[ ], 
C[ ], D[ ] in the working equations (A4). Suppose thatf tends asymptotically to 
a constant and consider what may happen when a ... d have become small. 
Then f(x + h) - f(x) will cancel out of (A4) at some stage, and thereafter the rel- 
evant equations of the process will be: 
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an1 = an* + 3bn* + 6c,* + 10dn* 

- [(25/24)(2an* + 3bn* + 4cn* + 5dn*)] 

b =n+ bn* + 4cn* + 10dn* 

(C4) * 
- [ 35/72 (2an* + 3bn* + 4Cn* + 5dn*)] 

Cn4 1 = cnr + 5dn* 

- [ 5/48 (2an* + 3bn* + 4cn* + 5dn*)] 

d*n~ dn* 

- [1/120 (2an* + 3bn* + 4cn* + 5dn*)] 

where the asterisk signifies a quantity integral in terms of the least count, and the 
[ ] symbolizes rounding. Note that these equations are in just the form we require 
to apply the "rounding away from zero" principle, since the terms 3bn*, 4cn* etc. 
are integral and have no effect on the behavior of the rounding. 

Normal rounding in equations (C4) leads to persistent roundoff noise. The 
rounding process is so non-linear that we have no analytical theory and must work 
out specific numerical examples. Two examples of indefinitely persisting (cyclic) 
roundoff noise are: 

n a* b c* * a* b* c* d* 

0 1 0 0 0 0 0 1 0 1 
1 -1 -1 0 0 1 5 7 4 1 
2 1 1 1 0 2 6 8 4 1 
3 1 1 0 0 3 5 6 3 1 
4 -1 -1 -1 0 4 4 6 3 1 
5 -1 -1 0 0 5 5 7 4 1 
6 1 1 1 0 6 6 8 4 1 

etc. etc. 

As we saw in Section 8, any behavior like this (and there are many cases of it) can 
frustrate the interval control in its attempts to increase the interval when the 
interval obviously ought to be increased. Curiously enough, the persistent cycles 
of roundoff noise contribute practically no error to y, for the contribution to y, 
averaged over a repetitive noise cycle, is no more than about h/60 times the least 
count. However, proper behavior of the interval control alone is enough reason for 
rectifying the roundoff behavior. 

The simplest change in rounding which suggests itself is rounding all four multi- 
plications in (C4) away from zero. However, such a simple remedy does not work, 
for it represents too drastic a modification of the fourth equation of (C4). It im- 
plies in fact that d* must change unless (2a* + 3b* + 4c* + 5d*) is zero, and per- 
sistent oscillation of d* results inevitably. After some experimentation the author 
has concluded that the best rule is: round the first three multiplications in (C4) 
away from zero according to (C3), but for the fourth multiplication move the 
multiplicand (2a* + 3b* + 4c* + 5d*)\away from zero by 16 units and then multiply 
by I , rounding normally. The treatment of the fourth multiplication is a "partial" 
rounding away from zero or a less drastic modification of normal rounding, but 
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clearly in the same spirit. The rounding rules thus finally fixed upon will cause 
every initial quadruple of integers to converge to (0, 0, 0, 0), as was verified by 
letting the computer treat every case. Actually, all initial quadruples of integers 
between -2 and 2 inclusive were examined, and all tend to (0, 0, 0,0 ). The average 
number of steps to arrive at (0, 0, 0,0 ) is and the maximum is 14. If we move the 
multiplicand of the last multiplication only 12 units instead of 16, one persistent 
cycle appears. If we move it 14, 16, respectively 18 units all quadruples converge 
to (0, 0, 0, 0) but the average number of steps to clear begins to increase. Thus 16 
seems a safe compromise. 

These principles may be of help in deciding how to round the arithmetic in 
other iterative digital processes, such as solving systems of implicit equations. In 
our present state of knowledge of the subject a certain amount of experimenting of 
the sort described above will probably have to be done in every individual case 
more complicated than the one-variable case. The general reason for stabilizing 
roundoff noise in these ways is to improve the functioning of tests-for-end, for such 
tests are subject to the same difficulties as test (22b) in our procedure. 
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