Triple Product Integrals of Laguerre Functions

By J. Gillis and M. Shimshoni

1. Introduction. We shall use the following standard definitions for Laguerre
polynomials (1) and Laguerre functions (2):

(1) La(z) = ; (—1) (:})i

r!
(2) () = e_I/2Ln(x)

The Laguerre functions are known to constitute a complete orthonormal set in
L*(0, »). Given a differential equation over 0 < z < « one naturally thinks, there-
fore, of the possibility of solution by expansion as a series of Laguerre functions.
However, for this to be useful for non-linear differential equations, we need to be
able to expand the product of two Laguerre functions as a linear series of these
functions. The main part of this paper is devoted to methods for effecting the
expansion, and we shall also give an application of the results. The similar problem
for Laguerre polynomials has been solved by Watson [5], and methods for com-
puting the expansion coefficients discussed by Gillis and Weiss [3].

We may write

(3) ers = Zorstxt
t=0
where
(4) Cos = [ M@ (@ (2) da.
o

We shall also write this as C,,.; .

It follows that the coefficients will be symmetric in all three suffixes. We give
below a table of these coefficients for 0 £ r £ s £ ¢t £ 10, and also expressions of
C,s¢ as polynomials in ¢t for0 £ r £ s < 3.

In Section 2 we discuss a number of formulas for C,s, . Those in (a) and (b)
involve three-fold summations and apply to general r, s, ¢t. In (¢) we obtain a
simple sum formula valid for the case » = 0 and, in (d), a double sum for the case
r = s. In Section 3 we shall derive two recurrence formulas for the coefficients
C.s: . As a check on the stability of these latter formulas in practice, it is advisable
to have comparatively simple alternative methods for computing ‘'C.,, for certain
particular triads r, s, ¢. For this purpose the formulas of Section 2 (c¢), (d) can
be of use.

2. Explicit Formulas.
(a)

= [ B (TR v ()5 2o ()5

2 2 TN s\t (e + B+ 7)!
2 ()OO0 e
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(b) Since

= w3 (-0 (M) L@, G,

a=0

it follows that

L)L) = 3 (- 1)”() > (- ”q()q

(6)
e (ECTIE o (T e.
ie.,
(7) L.(z)Ly(z) = ;AmLt(x)
where
Ty prate (TN (S (Pt a\ (P + ¢
R A SV [G]
Now [1],
(9) e =2 :Z)’,_”_ILP(x)
and so
tZ CriLi(z) = € *"Li(z)Li(z) = 2202ic’3—”_1ArmLp(x)Lm(x)
(10) o e wip
=23 Z_)M_]Z_ ]3_”_1ArsmAm,,lL,(x).
Hence

Crse =2 Z 3-1’_11‘1,-3,,, Appe = 2 Z (_1)a+ﬁ+7+5+m+t3—p—1

pm m,p,a,B,7,0

QECEEMETICT)

(12) ( > 377t =97
P28

while the sum over m is

o ()0 = o)z o (257

-0 iy a8,
=(-1)" if vy=a+8

(11)

(13)

Hence

e EEECTOOCC )
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(¢) Take Laplace transforms of both sides of (3). This gives [2]
(r _7': s> P (p— 1), —s —r —5;1 — p]
(15)
= Zt: Cralp — P (p+H™
Writing ¢ = (p — 3)/(p + %), we obtain

Z Crst qt — 2 (7' + 3)(1 + q)r+s(3 _ q)—'r—s—l

,
(16)

(83—¢)(3¢g—1)
RN CE S }

In the special case r = 0 this leads to the simple result that
Cose = coefficient of ¢*in 2(1 + ¢)°(3 — ¢) ™™

(17) =235 (s )l (1 — )1 (s + n — 0

n=0
We could similarly use (16) to obtain expressions for C... for small nonzero values
of 7, but the formulas soon become prohibitively complicated. It follows incidentally
from (17) that Co. > O for all s, ¢ and that 3°***'C,; is an even integer.
(d) From the generating function [1]

(18) goLn(z)u” = (1 —u) "exp fuz(u — 1)7Y

we obtain

(19) S h@ut = (1= )™ exp fha(u + D(u = D7
Hence

o) )
M(N(2) = (2m) f f (1 — )1 — o)
1 Jut+1 v+ 1
exp {§ z[u — + - 1]} du dv.
Choose w so that

(21) (w+1/(w—1)=@+1)/(u—-1)+ @+1)/(v-1)

(20)

and write
exp {f(w+ D(w -1 =1 — w);)\t(z)w‘.
Then

o ©*) p0(H)
(22) MEIA(2) = tzo (273) A (2) f j Fo(u, ) v dude
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where
(23) Fuu,v) =2(1+u+v—3w)(3—u—v—w) "

It follows that C,; is the coefficient of ¥™»° in F(u, v).
By putting # = 0 we can calculate Co,; and 1mmed1ately recover (17). Formulas

for other small values of  can be obtained by expanding [ + Fo(u, v)] in powers

of v. However, there is another case in which this can be used to obtain a closed
expression for Cy,; , namely, when » = s. For this purpose we write

(24) Fuu,v) = (=1)27 " (4a = B)'(1 — 1)
where
a = uv
and
(25) B=(u+1)(+1).

2
We note that the coefficient of v in the expansion of 8" is ( ) But, by (24),

(26) Fi(u0) = (=122 > 3 (- 1>m< )(4a)'~’"ﬂ"‘+"4_"<t_:;n).

m=0 n=0
It follows that C..., the coefficient of «™»" in the expression F.(u, v), is
t 0 2
1(__1)¢ __1\mo—2tm+n) 14 t+n m-+n
(27) H-D 'mz=0 nz=0 (=172 (m)( n )(T—t—l—m )

The table of numerical values of C,,; suggests the conjecture that C,,. has the sign
of (—1)"for 0 < t < r. This would mean that the double sum in (27) is always
positive for 0 < ¢ < r, but we have not been able to prove the conjecture.

3. Recurrence Relations.
(a) A Two-Index Recurrence Relation. From the relation

(28) oA (z) = —(r + Dha(z) + (2r + DNM(2) — (),
[1], we deduce that

(29) f (@) hsa(z) dz = —(r + 1)
0
and
(30) f aNidr =2 + 1,
0
while

(31) f A\ dz = 0 sl
0
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Multiplying both sides of (28) by A, and using (3), we get

Z Cntxkt
t==0

(32) ,, » w
= —(7' + l)g Cr+l.'.t)\t + (27' + 1)‘20(]":7\: - 7";0 Croie.\e .

We now multiply both sides of (32) by A, and integrate from 0 to =, using (29),
(30), (31), and immediately obtain

(33) (r+ 1)Crir.e
= tCr.a.t—l + 2(" - t)Cr.a.l + (t + l)Cr.a.H-l - 7'(/Yr—l.a,t-

This is the required recurrence relation. It can be used quite effectively, in con-
junction with (17), to compute a table of C,,.. We first compute Co.: by (17) for
an adequate range of (s, t). It then follows from (33) that

(34) Crot = 1Co,4,0-1 — 2tCopt + (¢ + 1)Cou.t41

and this gives us Cy,:, etc. The computation is reasonably stable, although, as a
safety precaution, one would carry more digits than are actually needed. Actually,
the explicit formula for Cy,. , obtainable from (17) and (34), is

(35) Cut = 22::03_”""2(8 — 14t —n)! 8 —t+n+ 1)} Fa

where
Free = (48 + 1)n® + (88 — 128t + 65 + 1)n

(36) 2
+ s[4s® — (12t — 5)s + 9t(¢ — 1) + 1].

A similar, but much more complicated formula can be derived from this for Ca, .
The corresponding formulas for C,,. become very complicated for larger values
of r.

For work with an electronic computer it would be better to have a method for
generating the C,.. as required rather than to store a table of these coefficients.
In the next paragraph we propose a method of achieving this by a recurrence
relation which operates on only one of the indices.

(b) An Alternative Recurrence Relation. We recall that A, satisfies the differ-
ential equation

(37) " + N+ (r+ 3 — )= 0.
Hence, if we write ‘

(38) u, = '\,

we can easily verify that

(39) u” + P, = 0,
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where

1 r+1 1
40 L= z _
(40) P 4x2+ T 4

It may then be deduced, by a standard procedure, that y = u,u, satisfies the differ-
ential equation

2y 4+ 2y 4+ 21+ 200 — 2)y”

(41)

— 224+ o+ )y + 2+ + )y =0
where
@) c=r+s+1)

o =|r—s| ).
Let z = A\, . Then, by (38),
(43) Yy = x2
and this may be substituted directly into (41), giving
(44)  £(2) = 22" + 5xz” + (4 + 202 — 2")2” + 3(c — 2)2' + (8" — 1)z = 0.
We now write

(45) 2 = Z Crg[kt
t

and substitute in £(2).
After a little manipulation, using the properties of Laguerre functions, we obtain

' 1
(46)  £(\) =(0—p—§f)>\; +[p2~2p0+52—§+(’;px—%af’]>\z

where
p=t+3
and hence, again going back to basic properties of A,
z8(\) = St + 1+ 2)(t + 3)hess
— (t + 1)(t + 2)(10t — 8¢ + 13)\s42
—25(t + )3 + 2t + 2(85° + 40 + DA
+ B4 DE+t+1) + 8¢+ 1) —o(f + ¢+ 3N
— 2st(38 + 4t + 166" — 8o + 3)his
— &t — 1)(10t — 8¢ — 3)Ae + Zt(t — 1)t — 2)Nis .
It follows from (45) and (47) that
(48) z£(2) = 2 B,

(47)



56 J. GILLIS AND M. SHIMSHONI

where
Bi= st +3)(t+2)(t + 1)Crui4s

— 4+ 2)(t+ 1)(10t — 8¢ + 17)C; 4,042
— &t + D3¢ + 10t + 165 — 8¢ + 10]C, ... 141

(49) +B@+DE+t+1) + 8@+ 1) — o+t + §)]Crn
— 25t[38 + 4t + 166" + 8¢ + 3]C; ..
— f5t(t — 1)(10t — 8¢ — 7)Crs.is
+ Stt — 1)t — 2)Craes -

Since £(z) = 0 we have, from the completeness of the A/s, that

10t — 8¢ + 17 3¢ + 10t + 168> — 8¢ + 10

Croies = 3(t ¥ 3) Crotv2 + 3(t F 2)(t ¥ 3) Croun
_ 1028 +32 +3t+1) + 282 + 1) —160(F + 1+ )
(50) 3¢+ DE+ 2)¢ + 3) et
+ (38 — 4t + 168" + 8o + 3) c
3+ DeE+2¢+3)
+ e = 1)(10t — 8 — 1) Cria2 — e — Dt = 2) Crst-3.

3t + D+ 2)(¢t+3) (t+ D+ 2)(¢t + 3)
Suppose, then, we know C,,, for t = 0, 1, 2. Then, putting ¢ = 0 in (50) gives us
18C, 3 = —2(8¢ — 17)Cr 2

(51) 2 2
+ 2(85° — 40 + 5)Cr oy — (28° — 80 — 10)Cr.0

and the subsequent terms are all obtainable from the recurrence relation. C, , ¢
and C.,,; can be computed directly from (17) and (35) respectively. It would be
possible to develop a corresponding formula for C, , 2 but it would not be very useful.
Perhaps the best way to obtain C. . is by use of the relation (33).

It should be remarked that equation (50) is probably the most suitable, among
the formulas given above, for use with an electronic computer. For work with a
desk computing machine it is rather complicated, and there is little doubt that (33)
would prove more useful.

4. Tables. When working by hand, it will generally be convenient to have a
table of the numerical values of the C,,; . We give this immediately below in Table
Ifor0 =r < s £t < 10. Some general formulas for C,, as polynomials in ¢ for
0 < r £ s < 3 are given in Table II.

5. Application. As mentioned in Section 1, our purpose was to apply the above
ideas to the solution of non-linear differential equations over a semi-infinite range.
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TaBLE I

’ s t Crst r s 4 Crst
0 0 0 .66666667 0 5 8 .07837182
0 0 1 . 22222222 0 5 9 .04878490
0 0 2 .07407407 0 5 10 .02839004
0 0 3 .02469136
0 0 4 .00823045 0 6 6 . 16045055
0 0 5 .00274348 0 6 7 . 14305131
0 0 6 .00091449 0 6 8 . 11236326
0 0 7 .00030483 0 6 9 .07984000
0 0 8 .00010161 0 6 10 .05233831
0 0 9 .00003387
0 0 10 .00001129 0 7 7 .14885106

0 7 8 .13475521
0 1 1 .37037037 0 7 9 .10898616
0 1 2 . 22222222 0 7 10 .08038815
0 1 3 . 10699588
0 1 4 .04663923 0 8 8 .13945383
0 1 5 .01920439 0 8 9 .12773173
0 1 6 .00762079 0 8 10 .10570201
0 1 7 .00294671
0 1 8 .00111772 0 9 9 .13163910
0 1 9 .00041773 0 9 10 .12169095
0 1 10 .00015430

0 10 10 . 12500700
0 2 2 . 27160494
0 2 3 .20027435 1 1 1 —.07407407
0 2 4 .11796982 1 1 2 .17283951
0 2 5 .06127115 1 1 3 .21124829
0 2 6 .02936544 1 1 4 . 15089163
0 2 7 .01331098 1 1 5 .08687700
0 2 8 .00579180 1 1 6 .04440380
0 2 9 .00244242 1 1 7 .02103338
0 2 10 .00100482 1 1 8 .00944978

1 1 9 .00408324
0 3 3 .22405121 1 1 10 .00171233
0 3 4 .18076513
0 3 5 . 12000203 1 2 2 —.04115226
0 3 6 .07021287 1 2 3 .08504801
0 3 7 .03762977 1 2 4 .16369456
0 3 8 .01891085 1 2 5 .15333029
0 3 9 .00904835 1 2 6 .10841843
0 3 10 .00416520 1 2 7 .06553879

1 2 8 .03580078
0 4 4 .19519382 1 2 9 .01821086
0 4 5 .16532033 1 2 10 .00878492
0 4 6 .11851174
0 4 7 .07545146 1 3 3 —.02042372
0 4 8 .04399736 1 3 4 .05009399
0 4 9 .02398552 1 3 5 . 12508256
0 4 10 .01239969 1 3 6 . 14086606

1 3 7 .11596019
0 5 5 .17527816 1 3 8 .07989974
0 5 6 .15303674 1 3 9 .04897920
0 5 7 .11566665 1 3 10 .02762203
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TaBLE I—Continued

“

-

Crat

r

“w

-

Crst

[ S S S Y

bt bk ek ek [ gy bk ok ek ek ok ek

[Srey STy

DN NDNDNN NDNNNDNDNDNDNDN

Nejie} Q0 00 Q0 NNy oo Ot U Ot U W R

—
o

WWWWWLw W NN NNDNN N

Yt —t — — —
S © SO [e=RVeNo JEN Nor) [eRUoNo JLN NorNv)] SOOI U

—
S O

—
OCRTIDUHRW OOV WN

—.01188843
.03383631
.09794126
. 12524062
.11552364
.08823376
.05941345

—.00795949
.02489458
.07889869
.11044813
.11111857
.09212795

—.00582692
.01934154
.06515827
.09753256
.10499757

—.00451393
.01560049
.05492763
08655013

—.00363396
.01293342
.04709154

—.00300868
.01095104

—.00254500

.20576132
—.00457247
.00335315
.09053498
.13260174
.12277939
.09060272
.05811997
.03385805

.15658182
.03119443
—.01249810
04167161
.09805416
.11549354
.10130123

NN NN N

WWWWWW WwWwwwwwww NN NN NN NN

OO 00w NI oo, QUOTOT OOt W R w

—
(=]

W e e WWWWwwWwwww

— p—t p—t
[=ReNe JEN Ner N, [=RI=No JEN Ko N, N (=]

[y

— Yt
© O © 0 [e=RVoN0 LN | [e=RIoNo JEN Nor)

—
o o

—
© 00~ O [=J<No LN NorR VL]

.07467760

.12284713
.04609731
.00911108
.01571953
.06735022
09906079
.10112375

.10347339
.05127568
.00230192
.00330548
.04431534
.08081952

.09128849
.05266394
.00397312
.00198035
.02815229

.08275543
05253757
.00903873
.00363722

.07631313
.05177168
.01298846

.07120551
.05073310

.06701828

.05375197
.11295704
.07694175
.00123814
.00106252
.05014082
.09001406
.10048996

.03744912
.07177090
.08787554
.02244924
.00731554
.01802366
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TaBLE I—Continued

59
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@
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.05982871

.02226023
.04824409
.08353180
03995357
.00156912
.00178650

.01411745
.03516063
.07516477
.04998029
.00808104

.00985944
.02724675
.06668946
.05474855

.00741466
.02201080
.05915185

.00586119
.01830449

.00479475

.12925988
.02134197
.02196251
.08246301
.05322789
.00474524
.00303408

.10673496
.00196740
.00100286
.06117005
.06583263
.02450630

.08660706
.01580477
.00811483
.04086770
.06525394

.07367692
.02281235
00867086
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(=)
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S
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[a—y
SO OOV

02567632

06531960
02633548
.00693875

.05946498
.02814148

05504858

04386690
.08650875
.03500443
.01294078
.02870872
.06403893

.03350414
.06117194
.05170139
.00581844
.00668642

.02189833
04397838
.05640500
.00564310

.01467602
.03341818
.05551730

.01055417
.02668086

.00808528

.09687151
02410491
.02789589
.06239762
.01401545

08320655
.00757894
.00739178
05666489

.06900813
00401100
00218959
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TaBLE I—Continued

r s ¢ Crst r s ¢ Crst
6 9 9 .05911346 8 8 8 .07864342
6 9 10 .01077477 8 8 9 —.02407255
8 8 10 .02947714
6 10 10 .05253399
8 9 9 .06917670
7 7 7 —.03776986 8 9 10 —.01154288
7 7 8 .07123199
7 7 9 .01652253 8 10 10 .05829179
7 7 10 —.00951384
9 9 9 —.03353927
7 8 8 —.03035843 9 9 10 .06114106
7 8 9 .05351461
7 8 10 .03227809
9 10 10 —.02786041
7 9 9 —.02107272
7 9 10 .04012854
10 10 10 .06681991
7 10 10 —.01469083
TaBLe II
r $ Crgt
00|23
011 (84 2)3—+2
02| (168 + 2)3—+
0| 3| (642 — 48t + 56t + 6)3~+5
11 (322 — 48t + 10)3~*3
112 (6488 — 24082 4+ 200t + 18)3—+*
113 | (2564 — 1664 + 305612 — 1264t + 78)3—+¢
2 1 2] (128 — 10248 + 246412 — 1664¢ + 66)3~+ 5
2 | 3| (51215 — 6528t + 2816082 — 46848¢> + 24824t + 438)3—+7
3.3 (2048t5)— 3993615 + 285824¢* — 920832 4+ 131456082 — 647280t +
4410)3—+°

An example of such an application will be given to illustrate the various technical
problems involved.
The Blasius Equation.

(52) v +yy" =0
(53) y(0) = ¥'(0) = 0;  y'(=) =2.
This is a well-known equation whose numerical solution has long been known [4].

However, as an example of the Laguerre functions method, we sought an approxi-
mate solution of the form

.
(54) y =fa(z) =2z + av + Z_;bmx,
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where ay , byo, bw1, - -+, byy Were constants to be determined.
The boundary condition at infinity is clearly satisfied, and, to attend to the
conditions at x = 0, we need

N

(55) ay + Zobm =0
and

N
(56) 2 — 7_‘6 (r + Hbyr =
thus leaving us the possibility of imposing N further conditions on the (N 4+ 2)
coefficients ax , byr (r = 0,1, --- , N). As an obvious set of conditions, we should
substitute from (54) in (52), express y” + yy” as a linear sum of \.’s, and equate
the coefficients of o, A1, - -+, Av—1 to zero. However, there is a difficulty in the

way of this program. The expression for A, in terms of the Laguerre functions
themselves involves all the A; for 0 £ r < n, while the expressions for \,”, \,”
become very complicated. The situation can be saved by pre-multiplying (52) by
2° and making repeated use of the relation

(57) A = 3+ Dhaps — 3o — $nhay -

Proceeding in this way, one finds oneself confronted with expressions of the form
2"\, . They, too, can be resolved by the repeated use of the relation

(58) oA = —(n + DA + (20 + DA — 2l

which also follows trivially from the fundamental properties of Laguerre poly-
nomials.

After making all of these substitutions into (52), we still have to deal with
products of Laguerre functions arising from the nonlinear term, and these have to
be resolved by (3). We are now in a position to equate the coefficients of Ao, A;, - - -,
Av_1 to zero, obtaining a set of N quadratic equations which, together with (55)
and (56), should suffice to determine the coefficients. In general, there will be
more than one solution, and any one of them might, if N is large enough, be ex-
pected to yield a function fx(z) which will approximate the exact solution of (52).
Since the solutions are obtained by equating the coefficients of Ao, A1, -+, Awv—g
to zero, it has been found useful in practice to select the one for which the coefficient
of Ax is least in absolute value.

Setting up the equations even for so simple a case as (52) is not a trivial task,
and can become extremely laborious for more complex equations. However, there
would be no real difficulty in having all the work, including the formal steps repre-
sented by (3), (57), and (58), programmed for an electronic computing machine.

We have described the procedure so far in some detail, since it is of quite general
application. The next step is actually to solve the equations for ay, by, (r = 0,
1, ---, N), and for this purpose the following type of approach has been found to
be practical. One first solves for some small value of N. The advance from N to
N + 1 is effected by solving the equations for N + 1 by the Newton-Raphson
method, taking as a first approximation to this solution

(59)  afh = av, bfhe =byv, (r =0,1,---, N),  biwvn = O.
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An advantage of this choice of first approximation is that it might, for obvious
reasons, be expected to be better as N increases. Hence the number of steps re-
quired for convergence decreases.

In the particular case of the Blasius equation, we started with N = 1, i.e.,
with three coefficients to be determined. Eliminating two of them by (55), (56)
left us with a quadratic equation in one unknown. The step to N = 2 was effected
as described. There would be no difficulty in principle in carrying on to higher
values of N. However, the arithmetic soon becomes extremely laborious, and the
task is best handed over to an electronic computing machine. The result for N = 2
is shown in Table III. The function tabulated as f(x) was obtained by direct
numerical integration, using essentially Hamel’s original method, and is given cor-
rect to three decimal places.

TasLe 111

% f2(2) 1)

0 0 0

1 0.732 0.650
2 2.337 2.305
3 4.247 4.280
4 6.252 6.279
5 8.248 8.279
6 10.273 10.279
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