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same difficulties. A feasible method for solving quadratic equations by modular 
computation can, however, be based upon the Taylor expansion (1 - 4x) -1/2 

() 2nXn. 
E n= nX 

6. Concluding Remarks. Preliminary analysis indicates that parallel computa- 
tion, using modular arithmetic, is feasible for certain kinds of problems. The parallel 
computation envisioned here leads very swiftly to a solution encoded "in modular 
notation." By this is meant, a system of simultaneous congruences, whose solution 
(in a specified interval), written as a binary number, has as its initial digits the 
binary number which is the goal of the computation. For results of practical value 
it will probably be necessary, at the very least, to use moduli whose product exceeds 
1010. Hence the feasibility of rapid solution of large-scale systems of congruences 
will determine the timesaving possibilities of the method. Any a priori knowledge 
about the solution, such as might be obtainable from a preliminary rough solution, 
analog computation, etc., leads to a reduction in the number of necessary moduli, 
i.e., knowledge of r binary places reduces the product of the mi needed by a factor 
2'. Again, in such a case as the boundary value problem, where the values of the 
solution at neighboring net points differ by amounts which can be bounded a priori, 
this fact might lead to a considerable reduction of labor in the "conversion" phase 
of the problem. 
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Permutations with Restricted Position 

By Frank Harary 

In his book on combinatorial analysis, Riordan [4, p. 163-164] discusses permu- 
tations with restricted position and mentions an open question: 
"Any restrictions of position may be represented on a square, w-ith the elements 
to be permuted as column heads and the positions as row heads, by putting a 
cross at a row-column intersection to mark a restriction. For example, for per- 
mutations of four (distinct) elements, the arrays of restrictions for the rencontres 
and reduiced meliage problems mentionied above are 
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1 2 3 4 1 2 3 4 

1 x 1 x x 
2 x 2 x x 
3 x 3 x x 
4 x 4 x x 

recontres menages 

Since a square of side n has n2 cells, and a cross may or may not appear in each 
cell, it is clear that with n elements 2 problems are possible (this includes per- 
mutations without restriction, for which no cell has a cross). However, many of 
these are not distinct since, from the enumeration standpoint, the relative rather 
than the absolute position of the crosses is important; for example, all n2 prob- 
lems having just one cross on the board are alike. The exact number of distinct 
problems, for any n, is not known, but some progress in this direction will appear 
in this chapter." 

In this note, we show that the question has been virtually solved in [2], and 
shall obtain an explicit formula for Pn I, "the exact number of distinct problems, 
for any n." For we shall see that the chromatically nonisomorphic bicolored graphs 
with n points of each color, which are enumerated in [2], are in a one-to-one cor- 
respondence with the distinct problems involving permutations on n objects with 
restricted position. 

A binary matrix is one in which every entry is 0 or 1. Consider the set M of all 
square binary matrices of order n. We say that two matrices A and B in M are 
equivalent if B can be obtained from A by the following'three operations: 

1. Perform any permutation on the rows of A, obtaining A1 
2. Perform any permutation on the columns of A1, obtaining A2 
3. Either leave the matrix A2 as it stands or take its transpose, obtaining 

A3= B. 
Obviously, this is an equivalence relation and it is clear that these three opera- 

tions are independent. This equivalence relation partitions M into equivalence 
classes. The number of distinct problems of permutations on n objects with restricted 
position is thus the number of equivalence classes of the matrices in M. In the above 
quotation from Riordan [4], the presence of an x in his matrix corresponds to that 
of a 1 in the associated binary matrix, while a blank space in his matrix becomes a 
0 in the binary matrix. 

A graph consists of a finite collection of points together with lines joining certain 
pairs of distinct points. When two points are joined by a line, they are adjacent. 
A graph is said to be colored with k colors if each point is assigned one of these 
colors, any two adjacent points have different colors, and all k colors are used. A 
bicolored graph is one which has been colored with two colors. 

To a given restricted permutation problem represented by the binary matrix 
A = (aij), there corresponds the bicolored graph with 2n points 1, 2, * n, 1', 
2',***, n' in which point i is joined by a line to point j' if and only if aij c 1. Thus 
for n 4, the rencontres and reduced m6nage problems give the bicolored graphs 
of Figure 1. 
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FIG. 1 

Two graphs are isomorphic if there is a one-to-one correspondence between 
their set of points which preserves adjacency. Two bicolored graphs are chromatically 
isomorphic if there is an isomorphism between them which preserves color, i.e., 
two points of the first graph have different colors if and only if their image points 
do. Clearly, chromatic isomorphism is an equivalence relation on bicolored graphs. 
As an illustration, we show in Figure 2 all bicolored graphs (up to chromatic iso- 
morphism) in which there are two points of each color, together with the corre- 
sponding matrices. 

LEMMA. Two square binary matrices are equivalent if and only if the corresponding 
bicolored graphs are chromatically isomorphic. 

Proof. We translate the three defining operations for equivalence of matrices 
into graphical terms. Any permutation of the rows of a matrix A in M corresponds 
to a renumbering of the n points of the first color in the associated bicolored graph 
G. A permutation of the columns of A becomes a renumbering of the n points of 
the second color. Finally, transposing the matrix A amounts to interchanging the 
two colors assigned to the points of G. Clearly, these three operations serve to char- 
acterize chromatic isomorphism. 

A formula for the counting polylnomial 
n2 

(1) gnn(X) - Z bqXq 
q-0 

where bq is the number of chromatically nonisomorphic bicolored graphs with n 
points of each color and q lines which have been found in [2]. Let Pn be the number 
of inequivalent matrices in M, i.e., the number of distinct types of restricted 
permutation problems (on n objects); then 

(2) Pn - gng(1) = bo + b. + + bn. 

For example, we see from Figure 2 that g22(X) = 1 + x + 2x2 + X3 + X4; hence 
P2 = 6. The number Pn may be found from the cycle index of the "exponentiation 
group" S82 (where Sn is the symmetric group of degree n) using the enumeration 
lemma of [1]. This is the same procedure as substituting 1 for x in the formula for 
gnn (X), which is derived using P6lya's method [3]. To give the result conveniently, 
we require the following notation: 



PERMUTATIONS WITH RESTRICTED POSITION 225 

(i) = (i X i22 i,n) denotes a partition of n such that: 

(3) ii + 2i2+ * + nin=n, 

n 

(4) v(i) = TI k-ik ! 
k=l 

and d(r, s) is the greatest common divisor of the positive integers r and s. 

1. .1' 1. .1' 1_ ' i 1' 1 1 

2. .21 2. .2' 2. .21 22k. 2' 

1 1' 

27172, 

FIG. 2 

We may now state the formula for Pn . Let 

n 
(5) a (i, j) = E i7j.d(r, s) 

T, 8=1 

(6) A(j) k E k[- + (2)] + E [(k + 1 ) Lk + k( ] + jjZi,d(r, s). 
k everL2 k odd 2 r<+ 

( 

Then 

(7) p Z E 1 j) + _ E . j2 
2 (i),(j) v(i)v(j) 2(j) v(J) 

where the first sum is taken over all pairs (i), (j) of partitions of n and the second 
sum is over all partitions (j) of n. 

We illustrate for n = 3 whose three partitions -i , 7r2, 7r3 are 1 + 1 + 1, 1 + 2, 
and 3. These may be written as the sequences 

(3,0,0), (1, 1,0), (0,0,1) 

respectively. The values of a (ri, ri) for n = 3 are given in the matrix: 

9 6 3 
a0c7ri,rj) i 6 5 2 

3 2 3 
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while the values of v(7ri) and 3(7ri) are given in the table: 

i vQir) f3Qir) 

1 6 6 
2 2 3 
3 3 2 

Hence we have 

P3 = - [- +2_ + 2 + 2 + 2+ 2 ]+ 1 [2 + 2 + 2 
26 
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Evaluation of the Zeros of Cross-Product 
Bessel Functions 

By L. Jackson Laslett and William Lewish 

1. Introduction. There is considerable interest in the zeros of certain cross- 
product Bessel functions which arise in solving Bessel's equation subject to Dirichlet 

or Neumann boundary conditions at r = a, b, 

(la) Jn(qa) Y.(qb) - Jn(qb) Y.(qa) = 0 

or 

(lb) Jn'(qa) Y,'(qb) - J,'(qb) Y,'(qa) = 0, 

because of their well-known application in physical or- engineering problems for 

which the use of cylindrical coordinates is appropriate. In many instances attention 
may be directed primarily to the zeros of such functions when n is not large because 
of the interest in the lower-order modes which are possible in the physical problem 
under consideration, but cases may also arise in which the higher-order modes will 

warrant attention in order to determine the circumstances in which such possibly 
unwanted modes may become excited. 

Solutions to (la) and (lb) have been discussed by a number of writers [1], [6], 
and results presented in the form of algebraic formulas, in tables, or graphically. 
For application to problems in which (b - a)/ (b + a) is small and in which n may 
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