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it, or including that which we, 2¢ cycles before, deleted from it, until the (2*7")st
combination, which corresponds to the empty set plus element k.

Proof of (1).Since the binary representation of 2°is a 1 bit followed by (k — 1)
zeros, the kth element is included on cycle 27", The kth element will remain until
the binary number 11 followed by (k — 1) zeros appears. This will be on cycle
number (2° + 2¥") > (2" — 1). Thus, all combinations from 2"~ through (2* —1)
will include the kth element.

Proof of (2). Since (2™ +¢) + (27 —¢) = 2, the binary representations of
(2" + ¢) and (2¥ — ¢) correspond in all their low-order zeros, and the low-order
1, in which they also correspond. The bit above the 1 must differ in the two num-
bers, due to the binary carry. Thus, B(2*™" + ¢) = —B(2*" — ¢).

To complete the proof by induction, we may note, by Table 1, that the algorithm
has generated all combinations for k < 4.
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Generation of Permutations by Addition
By John R. Howell

1. Introduction. Suppose one wishes to generate the k! permutations of k dis-
tinct marks. Representing these £ marks by 0, 1, 2, ---, (k — 1) written side by
side to form the ‘“digits” of a base k integer, then the repeated addition of 1 will
generate integers whose ‘““digits” represent permutations of ¥ marks. Many num-
bers are also generated which are not permutations. D. H. Lehmer [2] states that
this so-called addition method can be made more efficient by adding more than 1
to each successive integer.

2. Method. In this note, we show that the correct number greater than 1 to
add to this integer is a multiple of (¢ — 1) radix k.

Lemma 1. The arithmetic difference radiz k between an integer composed of mutu-
ally unlike digits and another integer composed of a permutation of the same digits
is a multiple of (k — 1).

Considering the process of “casting out nines,” it is obvious that the two in-
tegers are congruent mod (¢ — 1). Hence, their difference is zero mod (k — 1).

The method seems to have two advantages. First, one can generate all k! per-
mutations in lexicographic order. Second, all permutations “between’ two given
permutations can be obtained. The process can be made to be cyclic if upon ob-
taining (k' — 1), ---, O one takes the next permutation to be 0, 1, ---, (k — 1).

3. Example. Suppose we wish to generate the 4! permutations of 4 marks.
Representing these 4 marks by 0, 1, 2 and 3, we add 3 radix 4 to 0123 to get 0132.
Continuing this process we get the 4! permutations desired. The array below shows
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the first 16 numbers generated by this process. An asterisk marks each integer
whose digits represent a required permutation. The other integers were rejected
because of the occurrence of repeated digits.

Sequence Integer Sequence Integer
1 0123* 9 0303
2 0132* 10 0312*
3 0201 11 0321*
4 0210 12 0330
5 0213* 13 0333
6 0222 14 1002
7 0231* 15 1011
8 0300 16 1020

4. Adaptation to a Computer. In a computer such as the IBM 7090 where con-
vert instructions are available it is easy to do radix k arithmetic. Otherwise one
could simulate the process by adding 9 digit-wise and testing the resulting sum for
having unique digits each one of which is one of the original & digits.
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Multiple Quadrature with Central Differences
on One Line

By Herbert E. Salzer

Abstract. The coefficients A2, in the n-fold quadrature formulas for the stepwise
‘integration of (1) y™ = f(z, y, v/, -+, "), at intervals of k, namely, for n
even, (2) 8"yo = A" D ey (1 4+ A38"™)fo + -+, forn odd, (3) pé™yo = A" D s
(1 4+ A3.8°™fs + ---, are tabulated exactly for n = 1(1)6, m = 1(1)10. They
were calculated from the well-known symbolic formulas (4) 6";;/ = g&/D)"f;S (5)

0 6

(5/D)" = (5h/2 sinh™(8/2))" and (6) u = (1 + 6%/4)"2 = 1 + % +
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