
A Calculation of the Number of Lattice Points in 
the Circle and Sphere 

W. Fraser and C. C. Gotlieb 

1. Introduction. Let Ak(x) be the number of points (Y1, Y2, * Yk) satisfying 

( 1) Yl2 + Y22 + . . .Yk2?< X 

where yj , y2 ... Yk are integers (positive, negative or zero). Thus, Ak(x) is the 
number of lattice points in a k-dimensional hypersphere of radius xl/2. This paper 
describes the calculation of a table of A2(x) and A3(X) on an IBM 650 computer. 

As a first approximation these are, respectively, the area and volume of the 
circle and sphere, but the question is how good these approximations are. In gen- 
eral, we are interested in 

(2) Pk(x) = Ak(X) - Vk(X) 

where the volume of a sphere of radius x'12 in k-dimensional hyperspace is 

k12 k12 

(3) V x) = Hx 
P (k/2 + 1) 

P2(x) has been investigated by many celebrated mathematicians and Wilton [11 
gives an account of the early work. More recently there have been theoretical in- 
vestigations of Pk(X) for higher dimensions, particularly by Walfisz [2], whose nota- 
tion is being followed here. 

We write P2(x) = O(xc) to mean, in the usual sense, that there exists K such 
that 

I P2(x) L/xc < K as x -*o, and 

P2(x) = o(xX) to mean that 

P2(X)/ X'C - 0 as x - . 

Further, after Littlewood, we write P2(x) = Q(xc) to mean that there exists K > 0, 
and a sequence of values of x tending to infinity, for which 

I P2(x) I/xc > K 

that is, the negation of P2(x) = o(xc). Gauss observed that 

P2(x) = 0(X1/2) 

Hua [3] has shown that 

P2(X) = 0(x 1340), 

and Van der Corput [4] that 

P2(X) = o(x1 I) 
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TABLE 1 

Contributions to A 3(x)-First Method 

Symmetry 
Factors Multi- 

Name Solutions for: Conditions pcy 
Perrnu- Reflec-pict 
tation tion 

T y2+ y22+ y32x _ Y>2>3 >O 6 8 48 
U y12 + Y2 2 X Y1 > Y2 > O 6 4 24 
V 2y12+ Y22 Y1 > Y2> 0 3 8 24 
W Y12 + 2Y22 Y1 > Y2> 0 3 8 24 
S Y12_ X Yi> 0 3 2 6 
Y 2Y12< X Yi> 0 3 4 12 
Z 3y12_ X Y1> 0 1 8 8 

Hardy has shown that 

P2(x) = Q(X 1) 

so that we may write 

P2(X) = O(Xc) 

where c _ 4 and the best value is known to be less than 13/40. It is considered prob- 
able that c is arbitrarily close to 4. Besides furnishing numerical values of A2(x) 
and A3(x), one purpose of this tabulation is to examine the consistency of the 
observed numbers with this conjecture. 

Although analytic number theory yields considerable information on the be- 
havior of Pk(X) for k > 4, there seems to be little reported on P3(x). In general 

(4) Pk (x) = O(x (kl)12 and Pk(x) = Q(xkl2-1 

so that 

P3(x) = O(xc) 

where it is known that c _ 2 and the best value is equal to or less than 1. These 
limits, of course, are not very sharp; for P2(x) we get from (4) only that 2 > c _ 0. 
Thus, another purpose of the tabulation is to obtain some information about the 
behavior of P3(x). 

2. Computing Formulas. There are many summation formulas which can be 
derived for A3(x). Essentially they are all modified enumerations where advantage 
is taken of the symmetries present. 

Table 1 shows a decomposition into the terms which contribute to AJ(x). Allow- 
ing for the solution at the origin, we then get 

(5) A3(x) = 48T + 24(U + V + W) + 6S + 12Y + 8Z + 1* 

* As noted by Legendre this same result is reached by noting that A3(x) is given by.the 
number of terms having coefficients _ x in the expansion of (1 + 2 2; yi2)(1 + 2 j yj 2) 

(1 4- 2 ,k yk2). 
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We proceed to find expressions for each of these terms. Let [v/N] be the largest 
integer equal to or less than the square root of N, i.e., 

[v'N] ? N < [VN] + I. 
Then 

S= VX]; Y = [A/x/12]; Z= [+/x/3]. 

The other terms in (5) are evaluated by summation formulas. Consider the number 
of solutions of 

(6) y2 + y22 x with yj XO, Y2 O. 

For each yj, the number of permitted values of Y2 is [A/x -Y12, so that the number 
of solutions of (6) is given by Z j [Vx-y,2]. But this is equal to 

the number of solutions with yj > Y2 > 0 

+ the number of solutions with Y2 > y1 > 0 

+ the number of solutions with yj = Y2. 

That is, 

2U+ Y= [Vxy/ -2]. 
Y1=1 

A similar argument shows that 
[I\/ 2/ ]1 

V + W = E [Vx - 2y2]- [x/3]; 
Yj=1 

again, we have the number of solutions of 

Y12+ Y22 + Y3'_ X for Y1 > Y2 > 0= 3T + V + w 
rvim- min 
= X ~[ \X- yi2 _y2] 

y1=2 /2=1 

where min is the lesser of (y, - 1) and [V -y]. Thus we finally get 

minI ___ _ X_/2_ 

A3(x) = 16 Z[+x_ y2 y22]+8 x yI ] 
Y1=1 /2=1 1/=1 

+ 12 E [ y]+ 6[x] + . 

Further, it is easily seen that 
I-Vil 

(8) A2(x) = 4 Z rvx-y12] + 4[Vx] + 1. 

These equations, (7) and (8), were the two actually used the first time the table 
was computed. If it had been practical to compute in successive values of x it prob- 
ably would have been best to use a difference formula to find the contributions from 
successive spherical shells. Actually it was decided to compute in equal intervals 
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of xl/2 for a while, and then to skip to large arguments so that the asymptotic values 
could be examined. The IBM 650 computer used for the calculation was equipped 
with core storage and index registers. Although the full program required only 168 
instructions and the inner loop was completely in the 60-word core storage, it took 
about 10 hours to compute A3(106), the largest value for which equation (7) was 
used. 

A second and independent program was written for computing A2(x) and 
A8(x). This program was based on the equations: 

A3(X) =1 + 6 [/]+ 12 [A4 + 8 [ 3 + 24 E (+xy]- yi) 

(9) + 24 ,([x - 2yi2] - yj) + 24 -, ([ ] - Y1) 

L4 L6 

+ 48 Z TE ([<x- yl-y22 Y2)7 
Y1=1 Y2=Yl~l 

where 

L, is the largest integer, y, satisfying y2 + (y + 1)2 < x 

L2 is the largest integer, yj satisfying 2yj2 + (y' + 1)2 ? x 

L3 is the largest integer, yj satisfying y2 + 2y(U + 1)2 ? x 

L4 is the largest integer, yj satisfying yj2 + (yi + 1)2 + (Yi + 2) ? x 

L5 is the largest integer, Y2(Yl) satisfying yi + Y2 + (y' + 1) ? x; 

Lo 

(10) A2(x) = 1 + 4[x] + 4[V/x/2] + 8 E X-y2] -yl) 
Y1=1 

where Lo is the largest integer, Yi satisfying yi- + (Y, + 1)2 < x. These equations 
can be obtained by counting the lattice points according to the scheme illustrated 
in Figure 1 and Table 2. 

FIG. 1. Decomposition of A ,(xI 

FIG. 1. Decomposition of A3(X)-second method. 
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TABLE 2 
Contributions to A 3(x)-Second Method 

Source Multiplicity Number of Points 

PointO 1 1 
Line OF 6 [A/X] 
Line OG 12 [vAX/2] 
Line OC 8 [a /3] 
Plane OFG 24 X - y1 y) 

Plane OCA 24 x - - y Y) 

Plane OCG 24 E ([/ ] - 

Volume OACD 48 ZZ([Vx Y12 -Y22- Y2) 

FIG 2. Deopsto of A() -Gus method 

/ ~ ~~~~ 0 

/ 4 S O O O0 0 X 0 +A 

/ 4 , O 
~~~0 /0 0 0 A A 

h 

i 0 0 0 0 A A 

This second program was faster than the first, and it was possible to extend 
the calculation to x = 3.24 X 106, which value took about 1 1 hours to compute. 
For this value, A3(x) exceeds the 10 digits of the storage positions, but the individual 
sums contributing to the result are still within single-precision range. 

Since the calculation was done it has been realized that there are formulas 
which might be even more efficient for computing. These result from the following 

\~~~~~~~~~Y = 

equationFIG note byomoito Gauss:Gusmthd 

The terms contributing to A2(x) are shown in Figure 2, and it is seen that equation 
(11) is superior to equations (8) and (10) for computing because the contribution 
given by 4[Vl/cnwe2]t has been removed from the summation. When equation (11) 
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TABLE 3 
Computed Results 

X112 A3(X) P3(X) A2(X) P2(X) 

1 ~~~~~7 3 5 2 
2 33 1 13 0 
3 123 10 29 1 
4 257 11 49 1 
5 515 9 81 2 
6 925 20 113 0 
7 1419 18 149 5 
8 2109 36 197 4 
9 3071 17 253 1 

10 4169 20 317 3 
11 5575 1 377 3 
12 7153 85 441 11 
13 9171 32 529 2 
14 11513 19 613 3 
15 14147 10 709 2 
16 17077 80 797 7 
17 20479 101 901 7 
18 24405 24 1009 9 
19 28671 60 1129 5 
20 33401 109 1257 0 
21 38911 119 1373 12 
22 44473 129 1517 4 
23 50883 82 1653 9 
24 57777 129 1793 17 
25 65267 183 1961 2 
26 73525 97 2121 3 
27 82519 71 2289 1 
28 91965 13 2453 10 
29 101943 217 2629 13 
30 113081 16 2821 6 
31 124487 301 3001 18 
32 137065 193 3209 8 
33 150555 22 3409 12 
34 164517 119 3625 7 
35 179579 15 3853 5 
36 195269 163 4053 19 
37 212095 80 4293 8 
38 229549 298 4513 23 
39 248439 36 4777 1 
40 267761 322 5025 2 
41 288359 337 5261 20 
42 310177 162 5525 17 
43 332779 259 5789 20 
44 356637 181 6077 5 
45 381915 211 6361 1 
46 407597 123 6625 23 
47 434551 342 6921 19 
48 462781 466 7213 25 
49 492567 240 7525 18 
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TABLE 3-Continued 

X1/2 A3(X) P3(X) I A2(X) P2(X) 

50 523305 294 7845 9 
55 696507 403 9477 26 
60 904089 690 11289 21 
65 1149651 696 13273 0 
70 1436385 370 15373 21 
75 1767063 83 17665 6 
80 2143641 1020 20081 25 
85 2571711 730 22701 3 
90 3053617 11 25445 2 
95 3590863 501 28345 8 

100 4187857 1 933 31417 1 
105 4849327 279 34621 15 
110 5574721 559 37981 32 
115 6370351 275 41545 3 
120 7236577 1 1652 45225 14 
125 8180887 344 49077 10 
130 9201625 1147 53077 16 
135 10305407 588 57209 47 
140 11492081 1959 61529 46 
145 12768503 1548 66045 7 
150 14137637 470 70681 5 
155 105598031 500 75465 12 
160 17155325 1960 80381 44 
165 18817007 438 85501 29 
170, 20578325 1201 90785 7 
175 22448927 371 96209 2 
180 24427317 1707 101765 23 
185 26520663 1186 107501 20 
190 28729653 1259 113369 42 
195 31058271 1085 119433 26 
200 33507885 2437 125629 35 
300 113094545 2791 282697 46 
400 268077737 4836 502625 30 
500 523592077 6699 785349 49 
600 904769241 9443 1130913 60 
700 1436743985 11055 1539297 83 
800 2144654669 5916 2010573 46 
900 3053616505 11554 2544569 121 

1000 4188781437 8768 3141549 44 
1200 7238202017 27457 4523793 100 
1400 11494026189 | 14133 6157477 145 
1600 17157266213 I 18466 8042349 128 
1800 24428980617 1 43857 i 10178545 215 

is integrated plane-by-plane there results 

A3(X) 1 + 6[V/-] + 12[Vx//2] + 24 - ya ] 
yi=[vmI?]1 

(12) [VY2I [ E//Z_7J2 _e_ ,[/ _ 2_ 

+8 +KI16 z: E- __ TV-y1 Y22 
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Still other summation formulas can be derived and it is likely that the most efficient 
one will depend on the computer being used. A method of decomposition for finding 
Ak(x) which is best for k = 2 is not necessarily best for higher values of k. 

3. Results. A partial table of computed results is shown in Table 3. Shown 
there are x'12, A3(x), l P3(x) IA2(x) and P2(x) I for the following range: 

x = 1(1) 50(5) 200(100) 1000(200) 1800. 
3 

0 1 

02 3 4 5 6 7 

FIG. 3. Log X. 

5 _ 

3 

2 3 4 5 6 7 

FIG. 4. Log X. 
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All of these entries except those for x2 = 1200, 1400, 1600 and 1800 were com- 
puted by the two independent programs. The results agree with those given in the 
short table of reference [5]. Calculations were actually made for about 250 argu- 
ments in the range xl2= 1 to 2000. 

Because it is known that P2(x) = Q(x'14) the points of greatest interest in in- 
vestigating the asymptotic behavior of P2(x) are those local maxima, Mi of I P2(x) 1, 
satisfying I P2(Mi) I i i P2(X) I for all x < Mi. From the tabulated results it is 
only possible to obtain an estimate of these Mi and the corresponding values of 
IP2(Mi) I. 

Figure 3 shows a graph of log I P2(x) I versus log x for those computed values of 
x where log i P2(x) I is larger than any preceding value. We have drawn two lines 
on this graph, one with slope 1/3, and the other with slope 1/4. The line with slope 
1/3 looks too steep, that is, one feels that the points will continue to lie more and 
more below the line. The line with slope 1/4 looks reasonable, from which one can 
conclude that the conjecture that c is arbitrarily close to 1/4 is not inconsistent with 
the observed results. However some unpublished computations by Harry Mitchell 
of the Lockheed Missiles and Space Corporation show that for some x between 
106 and 1010 the values of I P2(x) I/x14 grow very remarkably. 

Figure 4 shows a graph of log I P3(x) I versus log x, for those computed values of 
x where log I P3(x) I is larger than any preceding value. Two lines, with slopes 
0.5 and 0.7 have been drawn. It looks as if the points will, in the main, continue to 
lie between these lines, from which we conjecture that 

I P3(x) I = O(xc) 

where 0.5 < c < 0.7. 
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