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1. Introduction. In this paper the word "matrix" denotes a real (but not neces- 
sarily symmetric) matrix of order N; by "vector" we mean a column vector with 
real or complex elements. For any matrix A, the roots of the equation 
det (A - XI) = 0 (I = unit matrix) are called the eigenvalues of A. By the multi- 
plicity of an eigenvalue we mean its multiplicity as a root of the above polynomial 
equation. If X is an eigenvalue of A, then any nontrivial solution x of the equation 
(A - XI) x = 0 is called an eigenvector (of A) associated with X. An eigenvalue is 
a dominant eigenvalue of the matrix A if its modulus is exceeded by the modulus of 
no other eigenvalue of A. 

The power method ([1]; [3], p. 296; [5]; [7]; [9]; [10]) is generally recognized as a 
numerically efficient algorithm for determining the dominant eigenvalue(s) and 
associated eigenvector(s) of a matrix. We review the method briefly for the case 
where the matrix A has a single dominant eigenvalue X with associated eigenvector u. 
(It is assumed that X has multiplicity one.) Denoting by the superscript T the trans- 
pose of a vector or matrix, we let v be an eigenvector of AT associated with the eigen- 
value X. Starting with any vector x(0) satisfying V Tx(O) 0, we now form by succes- 
sive matrix-vector multiplications the vectors 

X (n +1) -x A(n) n = 0, 1, 2, 

Then, denoting by a, ( v = 1, 2, * *N) the components of a vector a, we have for 
every v such that u, # 0 

X (n+l) 

lim X 

and furthermore, as n co) 
(n) (n) (n)* 

X1 X2 XN U1. U2: * UNA 

The convergence of the process can be sped up by devices such as shift of the 
origin [10], fractional iteration [8], and the 62-process [1]. Statements similar to the 
above still hold if the multiplicity of X is greater than one, but the convergence 
may then be slow due to the presence of nonlinear divisors. Once X, u, and the 
associated eigenvector of AT have been determined, one can, by a process known as 
deflation, construct a matrix A1 whose eigenvalues and eigenvectors are the same as 
those of A, except that the eigenvalue X is replaced by 0. The above process can 
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* This notation means that 

XV(n) U(n- ,V=1,2,,N). 
rN 1/2 - N 5 1/2 ( ,v=1 ,*** ) 

IE Ix.(n) 12 IE I 1l1, ! 2 
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then be repeated; if the matrices Al, A2, *.. all have single dominant eigenvalues, 
the above method yields successively all eigenvalues and eigenvectors of the ma- 
trix A. 

2. Conjugate Complex Dominant Eigenvalues. In the present note we wish to 
deal with the case where the matrix A has exactly two dominant eigenvalues, both 
simple, represented by the pair of conjugate complex numbers X = p etf and Xpe = f 

where p > 0, 0 < Ko 7r. The eigenvectors associated with X and with X may then 
be assumed to be conjugate complex vectors also. We shall denote them by u and t, 
where the components u, of u are given by 

u,- rvet V= 1, 2,*... ,N. 

In view of the fact that the eigenvectors are determined only up to a non-zero 
factor (which in the present case may even be complex), it should be noted that 
the r, are determined only up to a positive factor, and the so, only up to a common 
additive constant modulo 27r. Indicating by the superscript M the conjugate trans- 
pose of a complex vector or matrix, we denote by v the eigenvector of A' belonging 
to X, normalized such that uvu = 1. 

One of the methods for determining conjugate complex eigenvalues and cor- 
responding eigenvectors from the sequence {x (n)} that have been proposed ([3], 
p. 296; [9]) is known to be numerically unstable for small values of w0 [9]. In Section 3 
below we propose an alternate method that appears to be uniformly accurate for 
all values of so. In addition, the method yields very good approximations for both 
so and the sop almost without computation, by mere inspection of the signs of the 
sequences of the components of the (real) vectors x 

3. Sign Waves. It is known ([2], p. 283) that the presence of a pair of conjugate 
complex dominant eigenvalues is indicated by the occurrence of sign changes in the 
sequences {x$(n)}. For a certain matrix of order 6, the signs of the x,(n) were dis- 
tributed as follows: 

v I 1 2 3 4 5 6 

n=0 + + + + + + 
1 ? + + - + + 
2 - + 
3 - _ - + - - 

4 + + - + + _ 
5 + + + - + + 
6 - _ + - - + 
7 - 

_ 
- + - - 

8 - - - + - - 

9 + + + - + + 
10 + + + - + + 

Our method consists in exploring systematically the period and relative location 
of these sign waves. We ascribe a sign to all elements of the N sequences 
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[xv>n} (v - 1, , N). A zero element is assigned the sign of the first nonzero 
element following it. (If there is no such element, the sign is irrelevant for the follow- 
ing theory.) For k = 1, 2, ... we denote by n, 

W the index of the element in the 
sequence {x,(n)} at which the sign changes from minus to plus for the kth time, i.e., 
at which 

sign xv = -1 sign xv +1. 

(The indices nV(k) mark the beginnings of the kth sign wave in the sequence x,(n) 
In the example given above, ni(l) = 4, n(2) = 9, n5(2) = 9.) For v, Au = 1, 2, ... * 
N and k = 1, 2,** we put 

p(k) _ n,(k+i) n (k) 

(an) (c)- (k) 

(p(k) indicates the length of the kth sign wave in the vth component, and ,A repre- 
sents the phase difference between the kth sign waves in the vth and 14th compo- 
nents. In the above example, P3(i) = 4 a(22) -2.) We finally require the 
quantities 

Al = [x (n ]2 - X (n+l)x (n-1) 

With these definitions, we can state the following result: 
THEOREM. Let the matrix A satisfy the conditions stated at the beginning of Section 2, 

and let the vector x(?) be such that viX(o) - 0. Then the vectors x(n) defined by (1) satisfy 

(i) Ai ( A2 n) 
AN 

(n) 
-.., ri2: r22: - : rN2X 

For every v such that rV # 0, the following two statements hold: 

Ad (n+l) 

001 P = lim A, (n); 
nb3,oo 

p'v~ + pv(2) + ...+ p (k) 

(iii) lim i k + P 
k-aoo k 

exists, and 
27r 

'P =5 

For all v and 1L such that r, / 0, r,, 3 0, the following two statements hold: 
(iv) If sp/27r is irrational, then 

(i) (2) + )+ 
lima, ~ '(mod 1) 
k-noo kP 27r 

(v) If (p/27r = p/q is rational ((p, q) = 1) it can only be asserted that, for some 
integer 1, both the limit superior and the limit inferior of 

(vg ^(2) + (k) 

kP 

as k -> oo differ by at most 1/q from 

fPI 'v + I 

2r 
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4. Proof of the Theorem. Under the hypotheses of the theorem the matrix A can 
be represented in the form 

A = UVT + Xav" + A1 

where A1 is a matrix whose eigenvalues lie inside a circle of radius qp, 0 < q < 1. 
I 

xTx 
= ae a, where a > 0, we have 

x(n) = a( Xnuei + Xn fte-ia + W n) 

where the components of w(n) are bounded by Cqnpn with a suitable constant C. 
Hence 

(1) =r>(fi) 2ap {r, cos (nc + so, + a) + E,}, 

where 

(2) ? ey I < Cq. 

A simple calculation now yields 

n 
a2 2n 

- 

(sin 0)2 

where 

77 
? (n) 2Cqn sin2 ?,(2r, + Cq ) 

and hence 7 (n) -O 0 as n -* The relations (i) and, if r, X 0, (ii) now follow 
immediately. 

For the proof of the remaining statements of the theorem a modified version of 
(1) is required. Assume the integer n' is such that, for all v satisfying r, # 0, 

I Kp~nP< r, for n _ n'. Setting temporarily ,n) =n + fo, + a, we then have for 

n_ n' 

(2apn) -1 X(n) =Re {re ' (n) + -,} (n) 

Re {ei'o(n)[r, + e-io 3 0'E (n)]} 

=r, + eC i' (n) (- n) I Re l es (nQ)-, (n)) 

where 

( ) s rv + e> ) (.OSn() 0 (n) I < 
(3) tan 0 ,si 

T,+ Ej-, cos 2~" 
Hence 

(4) Z (n) = A (n) sin (n7 

where 

-4, 
( _2ap I r, + e - E6 > 0 

(n) 1l (n) 
01 = n(p + q,- + at + 1r _ (n 

2 

Formula (4) serves to determine the sign of x,(n as a function of n. 
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We shall require an explicit formula for n,(k) valid for large k. It follows from (2) 
and (3) that ,(n) -> 0 for n -C Let n" be such that 

I n) I < 2 Min (p, 7r -_ o n > n'" 

for all v satisfying r, # 0. We then have 

(5) 0 < <,' (n +1) _ g(n) < n > n X 

i.e., the sequence {1(n) } is monotonically increasing and assumes a value in every 
(open) interval of length 7r. Let k, denote the smallest integer such that 

n (k,) > n 

By (5) and by the definition of n(k), there exists an integer 7u, such that 

((n Vk P) = n, (k ^)o + (PV + a + -r _ 0,'(n) > 2m, Or 

p 
) = ( (k ) 

l)p + p + a + r OP < 2m, r. 
2 

More generally, for m = 0, 1, 2, we have 

(kn+m) + o + a + - - > 2(mp + m)r 
2 

(n(k+m) - 1)<p + (pp + a + r- _ (n-1) < 2(mp + m)7r. 
2 

We denote, for any real number a, by [a] the largest integer not exceeding a. We 
also set 

(6) UP = (P + a + 2 + 2r(kp-MP) 2 

If k = k, + m > kp, it then follows that 

(7) (~~~~k) [27rk-4 + o, ) 

For the proof of (iii) we observe that 

(k) 27rk (k) 

where the moduli of the numbers C0(k) are bounded. We have 

pv(1 + ppt(2) + *..+ p'(k) = n. (k +1) _ hi, (1 

and hence, using (7), if k > k1c, 

p^(1) + pP(2) + ... + 
pP(k) 27r + 21r + C0(k) - n()) ( 

k ro s c 

The second term on the right tends to zero as k --*oc, and (iii) follows. 
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For the proof of (iv) we set 

__) _ = 2- (() ? (2) + n (k)). 2 2irk 

The following lemma is required: 
LEMMA. If (p/21r is irrational, then there exists a constant c such that for all v satis- 

fying r, # 0 

limNvk) _= V + c (mod 1). 
k--oo27r 

The proof consists in showing that for a suitable integer lv and for every 3 > 0 

(8a) lim sup Nk) + c + + a 
k-voo 2r 

and 

(8b) lim inf Nu(k) > (P + c + l -3. 
k-v 2r 

For k > k, let 
nv(k) = (k) + q (k) + S {k) 

where 
(k) 2irk- 

(P 

q(k) = [21rk - ] - 2rk-(P 
L (P i (P 

5(k) = [27rk v + - ]_ [27rk- v] 

Let 3 > 0 be given, and let h be an integer such that 

< 3 for k > h, 
'P 

where n = n,(k). We then have 

1k _k( 
Njk = 2 k - M1 2] + P h (PV() + q(M) + s.(m)), 2 2hk\'~ 

where 
lMi = (n,(D) + n,(2) + .+ n (h-l))(P 

Since M does not depend on k, k1'I -O 0 as k - cc. An easy computation yields 

-k ' P (Ph) + P(h+1) + + p<k)) 
2 2i7rk 

- 1+4 + 
1 

jh(h-1) - (h- 1){,J. 2 2ir 2i7rk 

The limit of this expression as k - exists and equals - + 4',/2-r. 
Since 7r/(p is irrational, the numbers q, (k) are equidistributed in the interval 

(-1, 0] according to a classical theorem by H. Weyl (see [6], p. 71, 234). Hence 

lj1m ((qvh) +q(h?1) + q (k)' ) 

ko 1? 2 
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According to the definition of h, the numbers s,(k) can differ from 0 only if q,(k) lies 
either in the interval (-1, -1 + S) or in (-s, 0]. In either case, I s8(k) ? 1. Ac- 
cording to Weyl's theorem, the number of times either possibility occurs is asymp- 
totic to k5 as k -+ o . It follows that 

limsup~fs~(h) +s(h+I) + + k) ~ lim sup k- I sv + 8, + **+ S" | _ . 

Gathering the above results, we find that 

lim sup Nj) <_ I_ - + (-21 + 6), 
k-oo 27r 2 27r 

lim inf N,(k) _ {v - + ( 1 - a). 
k-aoo 2ir 2 2ir 

In view of (6), this establishes the relations (8) with 

c = a 
-O 

1 
Iv = kp -m,. 

C 2ir 4- 4- k~~ 
The statement of the lemma now follows in view of the fact that the above is true 
for arbitrary a > 0. 

Statement (iv) of the theorem now follows by observing the relation 
(1) (2) + (k) (c 

(9) ivy + A vy + + -U = NJ - Nvk) 
(9) ~~~~kP 

and letting k -- oo. 
(kc) If 2ir/So = q/p is rational and if (p, q) = 1, then the numbers qv are no longer 

equidistributed in (-1, 01, but take on with equal frequency ([4], p. 51) the p 
distinct values 

(10) _ _ m = O.1,i*y* *, p-1, 
p 

where Q is some number depending on 0 , 0< ? < i/p. It follows that 

(11) lim 
1 

(qvQh) + qj h+) + + qj(k)) 1 P - 

k--ooo k 2 

If 0 # 0 in (10), the numbers s,(k) are all zero for k sufficiently large, and thus 

lim! (S"(h) + 8P(h+1) + + Si(k) = 0. 
k-aoo 

If 0 = 0, then s,(k) = -1 if qv(k) = 0 and a>(n) < 0, and 5>(k) = 0 otherwise. We have 
q,,(k) = 0 every pth time for k large, thus 

lim sup - (sP(h) + Sp (h+) + + v (k) ) < 0 
k-o-oo kc 

lim inf- (s (h) + s (h+1) + + S (k) ) > 
k-ox k p 
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Thus in any case, if 2ir/,p is rational, 

urn sp Nk lim sur, Np 2 - 2 -4 (1 - 
k--~oo 2 24 r P/ 

lim inf N> -> - -1 4 1 + - 
k-~oo 2-r 2 41r \P/ 

From these relations statement (v) of the theorem follows as above by observing 
(9) and using the relations 

(1) (2) ~~~~~(k) 
5, +3~ + lim sup kP 

kn-oo 

< limr sup N (k) - lim inf N (k) 
kaz-,oo k-oo 

_ 1 _ _ _ ~" _ o ' + < 
r + 27rp---21r + (mod 1) 

- 2i7r 2i7rp 2ir q 

and a similar relation for the limit inferior. 

5. Numerical Results. 
1) As a basis for the numerical experiments we used the following 6 X 6 matrix 

A depending on two real parameters a and b, not both 0: 

A =al UD UH, where 

1 
a 

a + I bI 

f'l 1 1 1 1 1 

-\- V /6 A\- /6 -\6 -\/6 

1 1 -1 -1 1 -1 

2 -1 2 -1 -1 -1 

U- -1 2 1 1 - 1 -2 

1 1 -1 -2 1 

N/8 N// -8 ? -\/ V9 
1 -1 -1 2 -1 

(a-b b2 
|-2 a + b 0 

D = l -2 and where 

" s0 
~~~~~~~~~3 

UH is the conjugate transpose of U. 
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The eigenvalues of A are seen to be: 

a(a + bi), a(a - bi), -4a, -2a, a, and 3a. 

2) For a = 6, b = 2, the resulting matrix A was as follows: 

[ 0.2115385 0.3653846 -0.1767767 -0.05439283 0.3386381 -0.1387861 1 
0.3653846 0.2115385 0.1495803 0.3807498 0.02775722 -0.005551444 

-0.05439283 0.2583659 0.2307692 -0.3076923 0.2198260 0.5338631 
-0.1767767 0.2583659 -0.3942308 0.5384615 0.05103104 -0.2551552 

0.3386381 0.02775722 0.1138384 0.1570186 0.2548077 -0.1971154 
-0.03886011 0.09437457 0.5691923 -0.2198260 -0.1105769 0.09134615 j 

For this matrix, the following results were obtained: 

Eigenvalue 
Computed Actual 

Absolute Value Computed Argument Absolute Value Actual Argument 
0.926276 0.083221 radians 0.926276 0.083140 radians 

Eigenvector* 

Computed Absolute Computed Actual Absolute Actual 
Value Argument Value Argument 

1 33.450 1 33.680 
1.00000 33.450 1.00000 33.680 
0.392232 -90.000 0.392232 -90.000 
0.980581 52.530 0.980580 53.120 
0.866025 33.450 0.866025 33.680 
0.537086 -115.840 0.537086 -116.570 

3) Other cases: 
a) For a = 2 and b = 5, the results were as follows: 

Eigenvalue 

Computed Computed Actual Absolute Actual 
Absolute Value Argument Value Argument 

0.913625 1.46980 radians 0.913625 1.47113 radians 

Eigenvector 

Computed Absolute Computed Actual Absolute Actual 
Value Argument Value Argument 

1 0 radians 1 0 radians 
1.00000 0.0000 1.00000 0.0000 
1.05267 -0.2815 1.05267 -.2750 
0.419137 2.377 0.419137 2.324 
0.866025 0.0000 0.866025 0.0000 
0.587022 -0.4378 0.587022 -0.4101 

b) The case a = 4, b = 2 proved to be of interest. Letting Xi, - , X6 denote 
the actual (theoretical) eigenvalues of the matrix corresponding to this case, it 
turns out that I Xi I = i 2 I = 0.8958064 and I X3 I -0.8888888, so that X3 is close 

* Arguments in 2 were normalized so that the argument of the third component was -90?. 
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to XI both in location and absolute value. The numerical process for finding the 
absolute value of Xi did not converge in this case, but the numerical procedure for 
finding the argument of Xi yielded 0.12433 radians as compared with the actual 
value of 0.12436 radians; i.e., the angle was obtained as accurately in this case as 
in cases where j Xi I = J 21>>I3 1 > 

c) The case a = 0, b = 5 yielded the eigenvalue (i.e., absolute value and argu- 
ment) exactly. 

NOTE: In each numerical example considered, (1,1,1,1,1,1) was used as the 
starting vector, and so was determined from the average period of all components. 
The latter procedure was found to yield the angle so more accurately than when the 
average period of just one component was used. 
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