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Abstract. Formulas are given for n-point osculatory and hyperosculatory (as 
well as ordinary) polynomial interpolation for f(x), over (-1, 1), in terms of 
f(xi), f'(xi) and f"(xi) at the irregularly-spaced Chebyshev points xi = -cos 

I(2i - 1) r/2n}, i = 1, - , n. The advantage over corresponding formulas for 
xi equally spaced is in the squaring and cubing, in the respective osculatory and 
hyperosculatory formulas, of the approximate ratio of upper bounds for the re- 
mainder in ordinary interpolation using Chebyshev and equal spacing (e.g., for 
n = 10, the 15 per cent ratio for ordinary interpolation becoming 2.4 per cent and 
0.37 per cent for osculatory and hyperosculatory interpolation). The upper bounds 
for the remainders in these optimum n-point r-ply confluent formulas (here r = 1 
and 2) are around 2r times those of the optimum { (r + 1) n} -point non-confluent 
formulas. But these present confluent formulas may require fewer computations 
for irregular arguments when f(x) satisfies a simple first or second-order differential 
equation. To facilitate computation, for n = 2(1)10, auxiliary quantities as, bi 
and ci, i = 1, *, n, independent of x, are tabulated exactly or to 15S, not pre- 
cisely for the optimum points, but for those Chebyshev arguments rounded to 
2D ("near-optimum" points). At the very worst (n = 9, hyperosculatory) this 
change about doubles the remainder, which is still less than ( ) th of the remainder 
in the corresponding equally-spaced formula. 

1. Advantage Over Equal-Interval Formulas. Formulas are given here for 
n-point osculatory and hyperosculatory polynomial interpolation for f(x), from 
prescribed values of f(x) with its first, or first and second derivatives at the ir- 
regularly-spaced Chebyshev points xi+1 = cos { (2i - 1) 7r/2n}, i = 1, 2, -, n, 
instead of equally-spaced points. In this notation, xi = -xni+l and xi increases 
with i. For the sake of completeness, the ordinary Lagrangian interpolation formu- 
las are also given for these Chebyshev points. All n-point ordinary, osculatory and 
hyperosculatory formulas given here are exact for f(x) a polynomial of degree 
n - 1, 2n - 1 and 3n - 1 respectively. 

The advantage of Chebyshev-point over equal-interval polynomial interpola- 
tion formulas is apparent from the factor 11(x) = I in(x - xi) in the remainder 
term, which is 11(x)f( )(t)/n! for n-point ordinary Lagrangian interpolation, 

11(x) } 2f (2n(l) /(2n) ! for n-point osculatory interpolation and {II (x)}3f (In)/ (3n)! 
for n-point hyperosculatory interpolation. At the moment, in order to compare 
Chebyshev-point with equal-interval formulas, let the range of x be (-1, 1), since 
the relative improvement of the former over the latter is unchanged under any 
linear transformation. For xi at the Chebyshev points, II (x) I < (')n-Y, which is a 
fraction of the upper bound of I 11(x) I for equally-spaced xi's. However, that frac- 
tion is not impressively small, decreasing rather slowly with increasing n (except 
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SCHEDULE 1: Upper Bound for Absolute Value of Coefficient of f(n)(t) 

n Ordinary: m = n Osculatory: m = 2n Hyperosculatory: 
m = 3n 

Ratio to U.B. Ratio to U.B. Ratio to U.B. 
U.B. for equal U.B. for equal U.B. for equal 

spacing spacing spacing 

2 .250 50% .(1)104 25% .(3)174 121% 
3 .(1)417 65% .(4)868 42% .(7)431 27% 
4 .(2)521 63% .(6)388 40% .(11)408 25% 
5 .(3)521 55 % .(8)108 30% .(15)187 17% 
6 .(4)434 45% .(11)204 20% .(20)477 9.2% 
7 .(5)310 36% .(14)280 13% .(25)747 4.5 % 
8 .(6)194 27% .(17)292 7.6% .(30)769 2.1% 
9 .(7)108 21% .(20)238 4.3% .(35)547 0.90% 

10 .(9)538 15 % .(23)157 2.4 % .(40)281 0.37 % 

for a slight increase from n = 2 to n = 3) being somewhat larger than ' for n = 11. 
Thus ordinary Lagrangian interpolation at Chebyshev points, even for n = 9 or 
10, gains less than one full decimal place accuracy over interpolation at equally- 
spaced points. But in the osculatory and hyperosculatory cases, the { I(x) } 2 and 
II(x) }3 in the remainder term squares and cubes the relative improvement of 

the Chebyshev-point formulas. For instance, when n = 10 the approximately 15 
per cent ratio in the upper bounds of I1(x) I for the Chebyshev and equally-spaced 
points is now replaced by only around 2 per cent and 0.4 per cent in the ratios of 
the upper bounds of { 11(x) } 2 and I11j(x)}3 I respectively. 

In Schedule 1, we give the upper bound for the absolute value of the coefficient 
of f() ( -), -1 _ < 1, m = n, 2n and 3n, in the remainder term of the n-point 
ordinary, osculatory and hyperosculatory interpolation formulas, for n = 2(1)10 
to 3S. These bounds are, of course, 1/2 n-1! 1/22n-2(2n)! and 1/23n-3(3n)! respec- 
tively. Next to each upper bound is the ratio, in per cent, of that quantity to the 
corresponding upper bound when the n points xi are equally-spaced over 
(-1, 1). The quantity in parentheses indicates the number of zeros between 
the decimal point and the first significant digit. 

2. Comparison with Non-Osculatory Chebyshev-Point Formulas. The upper 
bounds for II1(x)} 2 and III(X)}31 in the n-point Chebyshev osculatory and hyper- 
osculatory formulas are (1)2n-2 and (4)3n-3 respectively, which is only twice and four 
times the upper bounds of (l)2n-1 and (1)3n-1 for I1(x) I in the 2n- and 3n-point opti- 
mum-point (non-confluent) formulas of the same degree of accuracy, namely, 
for xi at the zeros of the Chebyshev polynomials T2n(x) = ( 2n-1 cos (2n cos-' x) 
and T3,(x) = (3) 'n-1 COS (3n cos-' x). This two-and four-ratio is unchanged, of 
course, under a linear transformation to any range (a, b) other than (-1, 1), 
because the factor of { (b - a) /2}2n or I (b - a) /2}3n which then enters the re- 
mainder term is the same for both confluent and non-confluent forms of the in- 
terpolation formulas. 

The confluent Chebyshev-point formulas given here, while not quite as ac- 
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curate as the non-confluent Chebyshev-point formulas of the same degree, have 
this advantage: For irregularly-spaced values of xi , it is often less work to compute 
n values of yi - f(xi) together with yi' _ f'(xi), or with yi' and yi' f (xi), 
instead of 2n or 3n values of yis. For instance, in the osculatory case y = f(x) 
might satisfy a rather simple first-order differential equation y' = q(x, y) where 
it is easier to obtain n values of yi' = q(xi, yi) after yi has been calculated than 
to compute n more values of yi. The most obvious example is when O(x, y) = y, 
where y = ex and obtaining yi' = yi involves no extra work at all. In the hyper- 
osculatory case y might satisfy a simple second-order differential equation from 
which yi' is readily obtained from yi and yi'. 

3. Interpolation Formulas. We shall not repeat here the derivations of the 
interpolation formulas, since they have been given a number of times, as well as a 
full discussion of their advantages, efficient arrangement, remainder terms, ex- 
tension to inverse and complex interpolation, etc., in previous articles [1]-[3]. 
In (1)-(14) below, n is understood, i ranges from 1 to n, f f(x), f =f(xi), 
fig= f'(xi), fi -= f"(xi) and E denotes Z' I. We employ quantities pij, qX, 

ri and s% given by 
n 

Pij = l/(xi - Xj), j 5 i; qi pj; 

( 1) ~~~~~~~~~~~n 
ritqi; si= PiJ 

j=I jpi 

For each n we define first 

(2) Ais= Hr pij 
j=Ij i 

For ordinary interpolation we define 

(3) ai= k(n)Ai. 

For osculatory interpolation we define 

(4) ~~~~ai k2(n) A i 

(4) =obi -2qiai -2k2(n)qjAi2. 
For hyperosculatory interpolation we define 

rai k3(n)Ai3, 
(5) bi -3qia, =-3k3(n) q jA 3, 

= ri + Ii] = k3(n)[-rs + 4s]Au. 

In (3)-(5), the km(n), n = 1, 2, 3, denote suitably chosen constants that do not 
affect the results of the interpolation in formulas (7), (10) and (14), but which 
might (and this depends upon the values and functional nature of the arguments 
X.) facilitate appreciably the calculation and use of the auxiliary quantities as, 
ai and bi, or ai, bi and ci in (6)-(14). 

For ordinary n-point interpolation, of (n - 1)th degree accuracy, we obtain 

(6) i = ai/(x - xi), from which 
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For n-point polynomial osculatory interpolation of (2n - 1) th degree accuracy, 
we obtain 

(8) fs = ai(x -x), 

(9) as = (f3i + bi)/(x - xi), from which 

(10) fi- 2 (aifi + 03fi')/lai. 

For n-point polynomial hyperosculatory interpolation of (3n - 1)th degree 
accuracy, we obtain 

(11) yi = ai/2(x -xi), 

(12) 0i= (2-yi + bi)/(x -x), 

(13) ai = (As + ci) /(x - xi), from which 

(14) f - 2(aifi + (3fi/ + -yif )/2Jai%. 

4. Use of "Near-Optimum" Points. Instead of taking the xi precisely equal to 
the zeros of Tn(x), we now round them off to two decimal places. This makes the 
osculatory and hyperosculatory formulas "near-optimum" rather than "optimum" 
point formulas. Three reasons for such a choice are: 1) easier calculation and check- 
ing of the table of the auxiliary quantities a , bi and ci occurring in the interpola- 
tion formulas (7), (10) and (14); 2) some of the ai, for the lower values of n, 
can be given exactly with much fewer than 15 significant figures; 3) for many 
functions f(x), it is less work to calculate f(xi) when xi is an exact two-decimal 
argument. 

The employment of rounded-off zeros of T7(x) as the arguments xi was sug- 
gested by Lanczos's use of rounded zeros of Legendre polynomials for a modifi- 
cation of Gaussian quadrature. [4] In this present case, the slight shift in the x, 
from exact to rounded Chebyshev points does not produce too great a change in 
the upper bound for the remainder, (the changes for n = 7 and n = 9 being ap- 
preciably greater than the rest, as seen in Schedule 2). This justifies the terminology 
"near-optimum", which contrasts sharply with the experience of Lanezos with 
rounded Gaussian points for quadrature formulas. Thus, quoting his comment on 
an example [4, p. 410]: "Compared with the Gaussian error, the error has increased 
by the factor 71, which shows the great sensitivity of the Gaussian method to 
even small shifts of the zeros." Here, at the worst, for 9-point hyperosculatory 
interpolation, the choice of the near-optimum instead of optimum points causes 
the maximum error to be slightly more than doubled. But even then it is less than 
(YU1)th of the maximum error in the corresponding equally-spaced formula. 

In attempting to estimate the sensitivity in the upper bound of the absolute 
value of 11(x) = Tn(x) for a slight change of Axs in every xi, we differentiate 
Tn(x) = H' 1(x - xi) partially with respect to each xi, obtaining for D&(x), the 
dominant part of the deviation in 11(x), the expression 

(15) Dn(x) 1 ( _ x- - )Ax, 
i=1 X -Xi 
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TABLES of ai, bi and ci 

Ordinary Interpolation Osculatory Interpolation 

n i xi ai a b 

2 1, 2 +0.71 +1 1 +-1.40845 07042 2535 

3 1, 3 +0.87 1 1 ?t3.44827 58620 6897 
3 2 0 -2 4 0 

4 1, 4 +0.92 +1.9 0.361 ?-2.28481 29567 6948 
4 2, 3 +0.38 +-4.6 2.116 +-0.98676 86309 79157 

5 1, 5 +0.95 0.3481 0.12117 361 ?-1.21320 85521 6070 
5 2, 4 +0.59 -0.9025 0.81450 625 ?-0.67432 28058 42933 
5 3 0 1.1088 1.22943 744 0 

6 1, 6 +0.97 +1.5 0.225 ?-3.23024 16119 5097 
6 2, 5 +0.71 +-4.1 1.681 +2.37511 73717 7847 
6 3, 4 +0.26 +5.6 3.136 +-0.85512 42401 72493 

7 1, 7 +0.97 0.37810 201 0.14296 11299 66040 +-2.84410 18250 1904 
7 2, 6 +0.78 -1.04383 446 1.08959 03798 8349 +-1.99381 25356 4272 
7 3, 5 +0.43 1.51061 495 2.28195 75271 6350 +-1.46095 20152 4591 
7 4 0 -1.68976 500 2.85530 57552 2500 0 

8 1, 8 +0.98 +0.97536 56688 0.09513 38187 87367 1 +-2.45239 17122 6555 
8 2, 7 +0.83 +-2.81517 71648 0.79252 22469 21137 +-2.32927 47108 1650 
8 3, 6 +0.56 +4.15391 20805 1.72549 85572 5238 +-0.93364 45598 54158 
8 4, 5 +0.20 +4.72726 03686 2.23469 90592 5362 +0.05814 57965 08793 1 

9 1, 9 +0.98 0.46316 76707 68 0.21452 42912 44654 +-7.31124 44403 2311 
9 2, 8 +0.87 -1.22781 71566 08 1.50753 49700 6095 +-2.70477 66013 7086 
9 3, 7 +0.64 1.82850 70803 23 3.34343 81427 9134 +-4.60073 50158 6742 
9 4, 6 +0.34 -2.28761 18102 88 5.23316 77945 6914 +2.44461 28094 1959 
9 5 0 2.44750 84316 10 5.99029 75228 0204 0 

10 1, 10 +0.99 +0.41223 53180 2154 0.16993 79574 24320 +-6.73542 63847 8561 
10 2, 9 +0.89 +-1.24470 77696 4339 1.54929 74318 1062 +-8.10439 99566 8827 
10 3, 8 +0.71 +1.92977 33728 6557 3.72402 52706 2096 '+3.47307 39064 2641 
10 4, 7 +0.45 +-2.46258 91833 0950 6.06434 54857 5295 +t6.43767 06135 5020 
10 5, 6 T0.16 +2.73564 36743 5008 7.48374 63130 1161 +1.57793 67089 3871 

Hyperosculatory Interpolation 

n i xi ai b, C, 

2 1, 2 +0.71 +_ 1 -2.11267 60563 3803 +2.97560 00793 4934 

3 1, 3 +0.87 1 +-5.17241 37931 0345 15.85414 18945 700 
3 2 0 -8 0 -31.70828 37891 399 

4 1, 4 +0.92 +0.6859 -6.51171 69267 9301 +35.35105 61593 570 
4 2, 3 +0.38 +-9.7336 6.80870 35537 5619 +-86.36831 12988 727 

5 1, 5 +0.95 0.04218 05336 41 +-0.63347 68455 10712 5.35936 14929 5057 
5 2, 4 +0.59 -0.73509 18906 25 +0.91286 44984 09870 - 13.49924 33461 453 
5 3 0 1.36320 02334 72 0 16.27976 37063 895 

6 1, 6 +0.97 +0.03375 -0.72680 43626 88967 +8.74001 29929 3812 
6 2, 5 +0.71 +-0.68921 1.46069 71836 4376 +-23.92400 98678 306 
6 3, 4 +0.26 +1.75616 -0.71830 43617 44894 +32.66402 28607 687 

7 1, 7 +0.97 0.00540 53890 59203 10 +-0.16130 40925 02655 2.67672 79073 0026 
7 2, 6 +0.78 -0.11373 51985 80688 +0.31218 15347 22577 -7.06970 10338 4325 
7 3, 5 +0.43 0.34471 59155 79822 +t0.33104 03933 19465 10.26580 84638 704 
7 4 0 -0.48247 95729 47777 0 -11.74567 06746 548 
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TABLES of a,, bi and ci-(Continued) 

Hyperosculatory Interpolation 

n i xi ad b, ci 

8 1, 8 +O.98 40F.00927 90260 78703 83 -0.35879 68023 89020 +7.68100 77077 0057 
8 i 2, 7 +0O.83 --0.22310 90532 12837 0.98359 81464 65512 -?23.18826 27433 073 
8 3, 6 40O.56 40O.71675 69301 85600 -0.58174 16124 10694 +F33.10310 66120 670 
8 4, 5 +0O.20 4 1.05640 04298 5573 -0.04123 05479 15504 7 ?-34.10349 18155 463 

9 1, 9 +0O.98 0.00993 60716 29894 27 +-0.50794 98086 75992 14.41869 83299 256 
9 2, 8 +O.87 -0.18509 77300 42737 +O.49814 56673 93253 -30.70431 01740 749 
9 3, 7 +O.64 0.61135 00316 71595 +-1.26187 14826 8053 41.26425 87109 550 
9 4, 6 +O.34 -1.19714 56452 0752 +O.83884 87701 61438 -54.56736 40851 665 
9 1 5 0 1.46613 03694 9105 0 59.17743 44367 215 

10 1, 10 +O.991 FO.00700 54427 92274 56 -0.41648 70956 61415 +13.63892 25685 320 
10 1 2, 9 ==0.89 ?i0.19284 22550 86323 1.51314 14391 5812 +-46.53720 81301 798 
10 3, 8 ==0.71 =0.71865 24807 12282 - 1.00533 68319 9238 +F70.78787 62690 287 
10 4, 7 TO.45 -+1.49339 91597 0670 2.37800 07027 9572 +-93.69814 23293 455 
10 5, 6 TO.16 ==2.04728 63261 6309 0.64750 08864 49945 +104.39709 18091 15 

so that 

(16) ? W I ! 2-n+l 
I 
AxiI 

t Ix - xi 

Now for x in the neighborhood of the extrema of Tn(x) not close to the ends 
?t1, the { x - x, I stays large enough for (16) to furnish upper bounds 
for I D,(x) J/2Vn+l of the order of just several per cent when Axi is the roundoff 
error in employing x, to 2D. However (16) breaks down as a practical formula, 
for larger n and x either at ?-1 or at an extremum close to ?zz1 since there I x -X 

is quite small. This might also be expected from the very large derivative 
of 2`-'T,,(x) at x = +1l, its magnitude being W2. Thus, to be on the safe side, to 
provide for every x in the range (-1, 1), instead of using (15) or (16), the factor 
11(x) = HTJ>(x - x,) for the chosen near-optimum x,'s was calculated for every 
n from 2 to 10, for x = 1 (.001) 1, and its greatest deviation from zero was found. 
The percentage increase in the upper bound for the absolute value of the coefficient 
of f(m) (t) (see Schedule 1) , due to the use of these near-optimum points x, instead 
of optimum points, is given in Schedule 2. 

SCHEDULE 2: Increase in Schedule 1 When Using Near-Optimum Points 

n Ordinary Osculatory Hyperosculatory 

2 0.82 % 1.65% 2.5 % 
3 1.4 % 2.8 % 4.2 % 
4 5.1 % 10.5 % 16 % 
5 1.7 % 3.4 % 5.2 % 
6 2.6 5.3 % 8.0 % 
7 21 % 46 % 76 % 
8 6. 2 13 % 20 % 
9 29 % 66 % 113 % 

10 7.6 % 16 % 25 % 
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5. Tables of Auxiliary Coefficients ai, bi and ci. To facilitate the use of (6)-(14) 
for these near-optimum points xi, the auxiliary quantities ai, bi and ci are tabu- 
lated here for n - 2(1)10, i = 1, - , n. It reduced the work considerably to 
choose the constants km(n), m = 1, 2, 3, in (3)-(5), as products of powers of 
selected prime numbers < 200. As a result of this choice, it was easy to give exact 
values of all the quantities ai for ordinary interpolation, and of ai for n = 2(1)6 
for osculatory and hyperosculatory interpolation. The remaining quantities a, 
and all quantities bi and ci are given to 15S, believed to be correct to within a 
unit in the last place. In reading entries prefixed by at or T signs, the upper sign 
corresponds to the negative xis. 
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