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reviewer has examined, particularly because of its format, which is to be con- 
trasted with the customary semiquadrantal arrangement. The tabulation of the 
versine and doversine clearly requires the extended range of the argument given 
in these tables. The author justifies the tabulation of the six standard trigonometric 
functions also over the first two quadrants on the basis of the resulting ease of 
application to the solution of triangles. The typography is generally excellent, and 
the arrangement of the tabular data convenient. This book should prove a useful 
addition to the literature of mathematical tables. 

J. W. W. 

30 [F].-R. KORTUM & G. MCNIEL, A Table of Periodic Continued Fractions, 
Lockheed Aircraft Corporation, Sunnyvale, California, 1961, xv + 1484 p., 
29 cm. 

This huge and interesting table contains, first, the half-period of the regular 
continued fraction for the -V75 for each non-square natural number D less than 
10,000. For example, since 

1 + 1 + 1 + 3 + K 3' 

under D = 13 are listed the partial quotients: 3, 1, 1. Again, since 

1 1 1 1 1 1 

under D = 19 is the list: 4, 2, 1, 3. 
Next, let 

V_ = qo +-+ 1 + and xi = qi + 

and xi = (N/1E) + Pi) /Qi . Then Qt , the denominators of the complete quotients, are 
listed in a row parallel to the qi. 

If p, the period of the continued fraction, is odd, as in p = 5 for D = 13, the 
table gives the smallest solution x, y of 

x - Dy2 = -1. 

If p is even, as in p = 6 for D = 19, the smallest solution is given of the so-called 
Pell equation: 

x2- Dy2 = +1. 

The values of D for which p is odd are marked with an asterisk. 
Finally, if p2/D > 1, this ratio is given to 9 decimals. All of this was computed 

on an IBM 7090 in 36 minutes. 
While in [1] the continued fractions for D < 10,011 have already been given, 

together with both sequences Pi and Qi defined above, the range here of D for the 
solutions x, y, and for the ratio p2/D, would appear to exceed that in any pub- 
lished table. 

From a theoretical point of view the quantity p2/D is of considerable interest. 
If we list those D where p2/D attains a new maximum we obtain the following table: 
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D p2/D D p2/D 

3 1.333 631 3.651 
7 2.286 919 3.917 

43 2.326 1726 4.487 
46 3.130 4846 4.768 

211 3.204 1 7906 4.948 
331 3.492 

Further, the authors have extended their computation to D = 51,000 and have 
listed all such D for which p2/D exceeds 5. We may thus continue: 

D p2/D D p2/D 

10651 5.141 19231 5.731 
10774 5.257 32971 5.819 
18379 5.641 48799 6.064 

While these empirical data obviously suggest the possibility that 

p = O(D log D)"2 

the authors refrain from such a suggestion and also from any reference to pertinent 
theoretical work. 

Tenner's algorithm was used in the computation of the continued fractions. 
This requires two divisions and subtractions and one multiplication and addition 
in each cycle. An alternative algorithm is known that replaces one of these divisions 
by an addition. This latter computation would therefore be somewhat faster. But, 
alternatively, the redundancy in Tenner's algorithm (implicit in the fact that in 
one of these divisions the remainder is always zero) allows for a check at each 
cycle. But whether the authors utilized this check, or indeed made any check, is not 
indicated in their introduction. 

There is a printing defect which could have been easily avoided. In a block of 
10 decimal digits, if the high-order digit is a zero, it is printed as a blank. Thus, 
for D = 801, x = 500002000001 and y = 17666702000 are printed as 

50 2000001 
1 7666702000 

This is because the binary to decimal integer conversion subroutine which was 
used deliberately causes such suppression of high-order zeros on the assumption 
that they will not be preceded by a significant digit. To circumvent such suppression 
one can add 1010 to each binary number before conversion to 10 decimal digits. 
This fictitious high-order 1 is an 11th digit, and will not be printed, since only the 
10 low-order digits will be converted. Nonetheless, the routine is deceived, by its 
presence, into thinking that the high-order zeros are not now high order. A pro- 
grammer who keeps on his toes can often outwit the makers of subroutines. 
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In a covering letter one of the authors indicates that this table is the second 
[2] in a series of fourteen, or more, number-theoretic tables. While a few of these 
duplicate, at least in part, some known tables, the latter are often on magnetic tape, 
or cost money, or are otherwise inaccessible. The entire proposed series will certainly 
be welcome to mathematicians working in number theory. 

D. S. 

1. WILHELM PATZ, Tafel der regelmassigen Kettenbriiche, Berlin Akademie-Verlag, 1955. 
2. The first is A Table of Quadratic Residues for all Primes less than 2350. See RMT 35, 

Math. Comp., v. 15, 1961, p. 200. 

31 [I 1.-HERBERT E. SALZER & CHARLES H. RICHARDS, Tables for Non-linear 
Interpolation, 11 + 500 p., 29 cm., 1961. Deposited in the UMT file. 

These extensive unpublished tables present to eight decimal places the values of 
the functions A (x) = x( 1- x) /2 and B(x) = x( 1- x) (2 - x) /6, corresponding 
to x = 0(105) 1. This subinterval of the argument is ten times smaller than that 
occurring in any previous table of these functions. 

These tables can be used for either direct or inverse interpolation, employing 
either advancing or central differences. In the introductory text are listed, with 
appropriate error bounds, the Gregory-Newton formula and Everett's formula, for 
direct quadratic and cubic interpolation, and formulas for both quadratic and 
cubic inverse interpolation, employing advancing differences and central differences. 
Examples of the use of these formulas are included. 

The convenience of these tables is enhanced by their compact arrangement, 
which is achieved by tabulating B(1 - x) next to B(x). This juxtaposition, in 
conjunction with the relation A (1 - x) A (x), permits the argument x to range 
from 0 to 0.50000 on the left of the tables, while the complement 1 - x is shown 
on the right. 

The authors note the identity A (x) - B(x) = B(1 - x), which can be used 
as a check on interpolated values of A (x), B(x) and B(1 - x), and also as a method of 
obviating interpolation for B( 1 - x), following interpolation for A (x) and B(x) . 

Criteria for the need of these interpolation tables are stated explicitly, with 
reference to both advancing and central differences. 

A valuable list of references to tables treating higher-order interpolation is 
included. 

The authors add a precautionary note that this table is a preliminary print-out, 
not yet fully checked. 

J. W. W. 

32 [I, X1.-GEORGE E. FORSYTHE & WOLFGANG R. WASOW, Finite-Difference 
Methods for Partial Differential Equations, John Wiley & Sons, Inc., New York, 
1960, x + 444 p., 23 cm. Price $11.50 

The solution of partial differential equations by finite-difference methods con- 
stitutes one of the key areas in numerical analysis which have undergone rapid 
progress during the last decade. These advances have been accelerated largely by 
the availability of high-speed calculators. As a result, the numerical solution of 
many types of partial differential equations has been made feasible. This is a 
development of major significance in applied mathematics. 


