Minimum Periods, Modulo p, of First-Order Bell Exponential Integers

By Jack Levine and R. E. Dalton

1. Introduction. The integers of the title, B(n), can be defined by the generating function, given by Bell [1, 2],

(1.1)
$$e^{e^{x-1}} = \sum_{n=0}^{\infty} B(n) \frac{x^n}{n!}.$$

These numbers have been known for a long time and have a variety of interesting interpretations which include:

- (a) B(n) = the number of rhyming schemes in a stanza of n lines (attributed to Sylvester by Becker [3],
- (b) B(n) = the number of pattern sequences for words of n letters, as used in cryptology, Levine [4],
- (c) $B(n) = \text{number of ways } n \text{ unlike objects can be placed in 1, 2, 3, } \cdots$, or n like boxes (allowing blank boxes), Whitworth [5, p. 88],
- (d) B(n) = number of ways a product of n (distinct) primes may be factored, Jordan [6, p. 179], Williams [7].

Epstein [8] extended the definition of B(n) to include all real and complex numbers n by means of the representation

(1.2)
$$B(n) = \frac{1}{e} \sum_{i=0}^{\infty} \frac{t^{i}}{t^{i}}.$$

He also gave several asymptotic formulas for B(n) in addition to the numerical values of B(n) for $n = 1, \dots, 20$. This paper, as well as [2], contains numerous references dealing with these numbers.

For computational purposes, various defining relations are known, for example,

(1.3)
$$B(n) = \sum_{r=1}^{n} \sum_{k=0}^{r} \frac{(-1)^k}{r!} {r \choose k} (r-k)^n,$$

given by Bell [1], and Mendelsohn and Riordan [9]. This formula, (1.3), is equivalent to

(1.4)
$$B(n) = \sum_{r=1}^{n} S(n, r),$$

where S(n, r) are Stirling numbers of the second kind, and which was obtained by Broggi [10] and Becker and Riordan [11]. Other references relative to (1.3) and (1.4) are found in Epstein [8].

$$(1.5) B(n+1) = (B+1)^n,$$

where on the right, B^m is to be replaced by B(m) after expansion, was given by d'Ocogne [12]. (See also [1, 2, 11]).

Received February 16, 1962.

The difference formula,

$$(1.6) B(n) = \Delta^n B(1),$$

Becker and Browne [3], was found to be the simplest for a digital computer, and was used in the computation of the B(n) given in the present paper.

For a study of arithmetic properties of B(n), the congruence of Touchard [13],

(1.7)
$$B(n+p) \equiv B(n) + B(n+1), \mod p,$$

for p a prime, is basic.

In addition, for our purposes, we mention the following congruence given by Hall [14], Touchard [13], and Williams [7],

(1.8)
$$B(n + p^m) \equiv B(n + 1) + mB(n), \mod p$$

It is known that the (minimum) period of the sequence (reduced mod p)

$$(1.9)$$
 $B(0), B(1), B(2), \cdots, B(n), \cdots$

is a divisor of

$$(1.10) N_p = \frac{p^p - 1}{p - 1};$$

and Williams [7] has shown this minimum period is precisely N_p for p=2, 3, 5. In this paper we extend these results to primes p>5. The results obtained are stated in the theorem below.

THEOREM. The minimum period, mod p, of the sequence B(0), B(1), \cdots , B(n), of first-order Bell exponential integers is N_p for p=7, 11, 13, and 17. For the remaining primes p<50, p=19, 23, 29, 31, 37, 41, 43, 47, no known proper divisor, N, of N_p , with $N \leq 10^{40}$ can be a period.

In the course of the computations connected with this theorem the results of Cunningham [15] on factoring N_p have been extended to include several new factors for certain p. These are exhibited in Table 3.

In addition, the values of B(n), $n \le 74$, have been computed, and are given in Table 1. This extends results of Gupta [16] for $n \le 50$. Also, the values of B(n), mod p, $(n \le p, p < 50)$ are given in Table 2. Such values are needed in testing for periods.

2. Computation of B(n). The symbolic binomial expansion (1.5), though useful in the computation of the first several B(n), becomes bulky and time-consuming as n increases, since each successive B(n) computed by this iterative scheme requires n-2 multiplications and n additions involving larger numbers at each iteration. Formula (1.6), together with the initial values B(0) = 1, B(1) = 1, by contrast, requires but n-1 additions for each new B(n). (See Becker and Browne [3]). Such a difference formula as (1.6) is ideally suited for a digital computer, since it substitutes fixed-point addition for multiplication in which accuracy to the unit's digit must always be maintained. The only limitation which presented itself was the increasing size of the integers and differences involved. Using an octuple-precision addition subroutine, the numbers were generated on the difference table until a B(n) or a difference exceeded 80 digits, the capacity of a standard IBM card. This

The Exponential Integers $B(n), 0 \le n \le 74$

	ı						,	
×	012846	6 8 9 10	11 12 13 14 15	16 17 18 19 20	22 23 24 25 24 26 27	27 28 30	31 32 34 35 35	
	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 203 \\ 877 \\ 4140 \\ 21147 \\ 115975 \end{array}$	67×570 4213.597 2764 1137 190899322 138295×545	0480142147 2864869804 2076806159 2742205057 4158235372	9816156751 5738447323 5855084346 9294805289 2229999353 3618756274	6059989389 9934652455 0275191172 9332450147	6485095653 3818925644 6764728147 2388656799 3340426570	
				1 8 68 583 5172	47486 450671 4415200 44595886 463859033 4963124652	4571704793 6053940459 3980193886 4901451180	5894622637 7004990871 9284600760 8864036046 1956026656	
						5 61 713 8467	102933 1280646 16295958 211950393 2816002030	
								The state of the s

1							1
36 37 38 39 40 41	42 43 45 45	46 47 49 50	52 53 54 55	56 59 59 60	61 62 63 64 65	66 68 69 70	71 72 73 74
5525681317 5575624941 9540639146 7986425209 4702531067 7243788988	6626642567 0737767385 5797148876 4079693415	2276158355 0120174682 7746015761 3917247281 9221852770	9255819477 3972126463 2714242132 2850302011 6959079837	6268760300 9372517195 5622326263 9168867818 4482558637	0562378245 2269259738 3817172961 5339873395 5219287372	0759795263 1013719409 5803995436 4420003007 5088029195	6056131962 9134658745 1285425833 8714301202
9481833997 5044790194 2533052309 9283276885 3128932434 2820069407	9135350865 2171469328 2360053185 4705399365	8444470539 4209643151 5407184953 1859000263 8190891749	9158252441 1859914950 8353492840 0325734983 6106538872	4597905321 1749160260 5301562344 9101824891 4634775747	7346067337 6306024008 3433711094 8404975804 6043598236	1927803800 8866047702 0948067172 7377173674 0822799303	4336559472 7893570602 6139004370 3698116129
8197147298 8683662085 2898920956 8233307746 5883912049	1988726172 7971654843 3870550890 2636696023	4940029284 5111965053 4154202104 4003422155 4382577671	8569518301 4646270632 7812980215 9500692855 1885980436	0683714197 6338060009 4375749422 6248968535 6754555502	7899633456 5449355269 0284501901 1255575751 4100369945	778059875 7483175898 1748479319 3239986492 2344680979	6369225324 6744967255 2910039971 6591601595
3 52 746 10738 157450 2351152	35742549 552950118 8701963427 9258505266	5418219334 0059502461 9796303118 7154573358 8771078270	0004111524 4195872785 4714166107 5618265728 2831041960	4322581483 4462616580 4560786627 9000944152 6994066961	4228389322 2819234667 6724304738 3665272571 2767737441	7960017792 4005182365 8539032699 6239391942 9141305841	6689859323 6516792394 7140719361 3116781409
	13	226 3745 62891 1072613 18572426	326398387 5820533802 5292851801 1728758914 3408596862	8532064582 6194750696 5898429611 3630962165 6700755298	4794148211 5478623052 2488991245 5093436996 2241525768	8215593085 6721288085 3464061802 4627770706 8442449836	0096213470 8352734180 119283336 5772222046
			$\begin{array}{c} 10 \\ 193 \\ 3593 \end{array}$	67756 1294826 25071363 491767433 9769393074	6523644715 2373048214 7717004056 1433573588 7854578993	2388436694 3015234533 6961354788 9478363368 5112375567	2742599456 2882514514 4527656055 7070764709
					$\begin{array}{c} 19 \\ 400 \\ 8250 \\ 172134 \\ 3633778 \end{array}$	77605907 1676501284 6628224206 9212768387 5003898340	0093410464 8182092653 3568478894 4247925379
						80 1807	40813 931452 21483462 500690802

Table 2 $B(n) \ mod \ p, \ 0 \le n \le p, \ p \le 50$

			$\frac{(n)}{2}$		$\frac{a p}{a}$		$n \ge \frac{n}{n}$			50					
n	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	$\frac{2}{2}$	2	2 5	$\frac{2}{2}$	$\frac{2}{5}$	$\frac{2}{2}$	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{2}{5}$	$\frac{2}{5}$	$\frac{2}{5}$	$\frac{2}{2}$	2	$\begin{array}{c} 1 \\ 2 \\ 5 \end{array}$
3		2	0	5	5	5	5	15	5	5	15	5	5	5	5
2 3 4 5 6 7			$_2^0$	$\frac{1}{3}$	4	$\frac{2}{0}$	15	15	15	15	15	15	15	15	15 5 15
ე 6			4	0	8 5	8	$\frac{1}{16}$	14 13	$\begin{array}{c} 6 \\ 19 \end{array}$	$\begin{array}{c} 23 \\ 0 \end{array}$	$\begin{array}{c} 21 \\ 17 \end{array}$	15 18	$\frac{11}{39}$	$\begin{array}{c} 9 \\ 31 \end{array}$	15
7				$\frac{0}{2}$	S S	$\overset{\circ}{6}$	10	19	3	7	71	$\frac{18}{26}$	$\frac{59}{16}$	31 17	$\frac{13}{31}$
8					$\frac{8}{4}$	6	9	$\frac{3}{17}$	$\ddot{0}$	22	$\begin{array}{c} 9 \\ 17 \end{array}$	33	40	12	1
8 9					5	$\overset{\circ}{9}$	16	0	10	6	5	$\frac{30}{20}$	$\frac{10}{32}$	34	4 44
10					$\begin{array}{c} 5 \\ 2 \\ 2 \end{array}$	$\overset{o}{2}$	1	18	9	$\overset{\circ}{4}$	$\overset{\circ}{4}$	$\frac{17}{17}$	2 7	4	$\frac{11}{26}$
10 11 12 13					$\bar{2}$	$\bar{9}$	$1\overline{5}$	4	ĭ	28	11	$\hat{27}$	$\frac{1}{20}$	30	31
$\overline{12}$					_	11	11	$\tilde{5}$	$2\overline{0}$	$\overline{13}$	$\overline{15}$	0	$\frac{1}{27}$	$\frac{27}{27}$	31 0
13						f 2	6	7	1	$\overline{13}$	1	35	23	38	$2\overset{\circ}{4}$
14							15	14	12	7	20	5	1	5	33
14 15							11	16	9	20	30	36	9	27	42
16							14	15	5	28	16	2	4	42	38
17 18							2	$\frac{1}{10}$	6	17	8	29	19	19	33 42 38 12 22
18								10	6	16	1	21	17	1	22
19								2	9	20	21	28	16	20	44 43
20									4	20	3	23	3	26	43
$\begin{array}{c} 21 \\ 22 \end{array}$									16	15	25	32	$\frac{22}{33}$	27	$\begin{array}{c} 5 \\ 25 \end{array}$
22									22	5	26	32	33	39	25
$\begin{array}{c} 23 \\ 24 \end{array}$									2	$\frac{25}{7}$	19	6	3	$\begin{array}{c} 36 \\ 42 \end{array}$	$\frac{29}{3}$
$\frac{24}{25}$										$\frac{7}{24}$	$\frac{16}{2}$	$\frac{34}{0}$	$\frac{23}{3}$	$\frac{42}{27}$	$\frac{3}{20}$
$\frac{25}{26}$										$\frac{24}{11}$	15	$\frac{0}{26}$	$\frac{38}{38}$	41	10
$\overset{20}{27}$										$\frac{11}{21}$	16	19	13	$\frac{41}{42}$	10
28										18	17	$\frac{13}{12}$	13	27	23
$\frac{29}{29}$										$\overset{10}{2}$	$\overline{12}$	$\overline{21}$	35	1	30
$\overline{30}$										_	3	10	$\frac{23}{23}$	11	$\frac{33}{22}$
31											$\frac{3}{2}$	1	4	35	44
32												35	2	21	18
33												35	$\frac{2}{37}$	3	0 23 30 22 44 18 35 46
34												26	34	28	46
35												17	14	33	11 37 45 25 16
36												6	35	32	37
37												2	40	$\frac{28}{3}$	45
38													$\frac{31}{c}$	3	25 16
39 40													6	7	16
40													${f 5} \\ {f 2}$	12	17
$\begin{array}{c} 41 \\ 42 \end{array}$													2	41	- D 19
$\begin{array}{c} 42 \\ 43 \end{array}$														$\frac{17}{2}$	5 13 9 23
43 44														4	92 9
$\frac{44}{45}$															40 27
$\frac{45}{46}$															01
40 47															1()
47															37 19 2

condition occurred during the computation of B(75). The program, which used the SOAP I assembly program, was used on an IBM 650 to compute the 75 numbers in 73 minutes. A check was made with Gupta's highest value, B(50), and the numbers were found to be identical.

3. Factorization of N_p , (p < 50). From a result of Fontene [17], it follows that all factors of N_p are of the form 2kp + 1, when p is an odd prime. Using this information, a program was developed for the Univac 1105 in the USE compiler language. This simply involved successive division of N_p by divisors of the form

$$P_k = 2pk + 1,$$
 $k = 1, 2, 3, \cdots$

until a zero remainder was reached. Since the routine was single-precision for the divisors, the P_k 's were limited in magnitude to one accumulator length on the Univac 1105, or to values $P_k < 2^{35}$.

Table 3 gives the N_p and the factors thus obtained.

The following is a summary of new prime factors and other information not contained in Cunningham [15, p. 72].

Case p = 17. N_{17} is completely factored into the three prime factors 10949, 1749233, 2699538733.

Case p = 19. No factors of N_{19} have been found, but N_{19} contains no factor <17,005,305

Table 3 N_p 's and Prime Factors (Indicated by*)

p	$N_p = \frac{p^p - 1}{p - 1}$
5	$N_5 = 781 = 11 \cdot 71 $
7	$N_7 = 1 \ 37257 = 29 \cdot 4733 $
11	$N_{11} = 2.85311 67061 = 15797 \cdot 1806113 \cdot$
13	$N_{13} = 2523 \ 95922 \ 16021 = 53 \cdot 264031 \cdot 1803647 $
17	$N_{17} = 51702 \ 51636 \ 78960 \ 47761 = 10949 \cdot 1749233 \cdot 2699538733 \cdot$
19	$N_{19} = 1099 12203 09223 96438 40221$ No known prime factors
23	$N_{23} = 94911 \ 21818 \ 11268 \ 72883 \ 43196 \ 77753 = 461 \cdot 1289 \cdot $
	1597216194112486480522357
29	$N_{29} = 9 17030 76898 61468 33772 08150 52610 77188 02981 =$
	$59* \cdot 16763* \cdot 84449* \cdot 2428577* \cdot 14111459* \cdot 32037737880884399$
31	$N_{31} = 56897 24710 24107 86528 70214 34301 97715 85348 24481 No$
0=	known prime factors
37	$N_{37} = 29 \ 31981 \ 93216 \ 04953 \ 92799 \ 53613 \ 49988 \ 42485 \ 03538 \ 78009$
4.4	$36166 \ 51181 = 149 \cdot 1999 \cdot 7993 \cdot (quotient > 40 \text{ digits})$
41	$N_{41} = 33271 94076 58177 99967 83498 10240 83656 39964 72332$
49	54041 27485 81284 48841 = 83*. (quotient > 40 digits)
43	$N_{43} = 4129 \ 46984 \ 92929 \ 20838 \ 07232 \ 88782 \ 88579 \ 08531 \ 14434$
	$61669 54570 31137 54094 99893 = 173* \cdot 6709*. $ (quotient > 40
47	digits)
47	$N_{47} = 84\ 30270\ 13796\ 61926\ 57970\ 97431\ 77268\ 05988\ 90944\ 54377$
	$04795 \ 47313 \ 54904 \ 95405 \ 42692 \ 40497 = 1693* \cdot (quotient > 40 \ digits)$
	TO digita)

Case p = 23. No new prime factors of N_{23} have been found, but the third factor 1,597,216,194,112,486,480,522,357 contains no factor <59,929,399

Case p = 29. Four new prime factors of N_{29} are 16763, 84449, 2428577, 14111459.

4. Determination of minimum periods, mod p. The knowledge of B(1), B(2), \cdots , B(p), (or of any p consecutive B's) will determine the complete set of B's, mod p. Hence, if N be a factor of N_p , to test for a period of the sequence $\{B(n)\}$ mod p, it is sufficient to calculate B(N+1), B(N+2), \cdots , B(N+p), mod p, and compare with B(1), B(2), \cdots , B(p), mod p.

Furthermore, if N_p can be expressed as a product of r factors, it is not necessary to test all possible combinations of factors for periods, but merely the combinations of r-1 factors. A positive result would indicate what further testings are necessary.

In case the complete factorization of N_p into prime factors is unknown it may not be possible to find the minimum period.

The actual testing of the various factors for the period property was accomplished on an IBM 650. The program requires N, the factor to be tested; p, the particular prime; and $B(1), B(2), \dots, B(p)$, mod p. These B's were obtained from a modification of the program used to calculate Table 1 and are given in Table 2. The program used could test any factor less than 10^{40} . It would, of course, be impractical to calculate every B through B(N + p), so a process of proceeding in jumps of powers of p by means of p by means of p by used.

The factor N being tested is first expressed to the base p,

$$(4.1) N = a_n p^n + a_{n-1} p^{n-1} + \dots + a_1 p + a_0.$$

The various steps are then (all calculations mod p):

- (1) Calculate B(p + 1) by (1.7).
- (2) Calculate $B(a_np^n + x)$, $x = 1, 2, \dots, p + 1$, by the iterations

$$(4.2) B(tp^n + y) = B((t-1)p^n + y + 1) + nB((t-1)p^n + y),$$

$$(4.3) B(tp^n + p + 1) = B(tp^n + 1) + B(tp^n + 2),$$

where $t = 1, 2, \dots, a_n$; $y = 1, 2, \dots, p$. Equation (4.2) follows from (1.8), and (4.3) from (1.7).

(3) Calculate $B(a_n p^n + a_{n-1} p^{n-1} + x), x = 1, 2, \dots, p + 1$, by

$$(4.4) \quad B(up^{n-1}+z) = B((u-1)p^{n-1}+z+1) + (n-1)B((u-1)p^{n-1}+z),$$

$$(4.5) B(up^{n-1} + p + 1) = B(up^{n-1} + 1) + B(up^{n-1} + 2),$$

where $u = 1, 2, \dots, a_{n-1}$; $z = a_n p^n + 1, \dots, a_n p^n + p$.

This procedure is continued until we reach

$$(4.6) B(M+1), B(M+2), \cdots, B(M+p),$$

where

$$M = a_n p^n + a_{n-1} p^{n-1} + \cdots + a_1 p.$$

Since one member of (4.6) is B(N), we start from that point and calculate

$$B(N+1), B(N+2), \dots, B(N+p),$$

which are then compared with

$$B(1), B(2), \cdots, B(p),$$

for the period property. The results of these calculations have been given in the theorem of Section 1.

North Carolina State College Raleigh, North Carolina

- E. T. Bell, "Exponential numbers," Amer. Math. Monthly, v. 41, 1934, p. 411-419.
 E. T. Bell, "The iterated exponential integers," Ann. of Math., v. 39, 1938, p. 539-557.
 H. W. Becker & D. H. Browne, "Problem E461 and solution," Amer. Math. Monthly,
- v. 48, 1941, p. 701-703.
 4. Jack Levine, "A binomial identity related to rhyming sequences," Math. Mag., v. 32, 1958, p. 71-74.
 5. W. A. Whitworth, Choice and Chance, Hafner Publ. Co., New York, 1951.
- 6. C. JORDAN, Calculus of Finite Differences, Second Edition, Chelsea Publ. Co., New York,
- 7. G. T. WILLIAMS, "Numbers generated by the function $e^{e^{x}-1}$," Amer. Math. Monthly, v.
- 52, 1945, p. 323-327.
 8. L. F. EPSTEIN, "A function related to the series for e^{ex}," J. Math. Phys., v. 18, 1939, p. 153-173.
- 9. N. S. MENDELSOHN & J. RIORDAN, "Problem 4340 and solution," Amer. Math. Monthly,
- v. 58, 1951, p. 46-48.

 10. U. Broggi, "Su di qualche applicazione dei numeri di Stirling," Ist. Lombardo Rend., II. s., v. 66, 1933, p. 196-202.
- 11. H. W. BECKER & J. RIORDAN, "The arithmetic of Bell and Stirling numbers," Amer.
- 11. H. W. BECKER & J. RIORDAN, "The arithmetic of Bell and Stirling numbers," Amer. J. Math., v. 70, 1948, p. 385-394.

 12. M. D'OCAGNE, "Sur une classe de nombres remarquables," Amer. J. Math., v. 9, 1887, p. 353-380. (See also 1, 2, 11).

 13. J. TOUCHARD, "Propriétés arithmétiques de certains nombres recurrents," Ann. Soc. Sci. Bruxelles, v. 53A, 1933, p. 21-31.

 14. M. HALL, "Arithmetic properties of a partition function," (Abstract 200), Bull. Amer. Math. Soc., v. 40, 1934.

 15. A. CUNNINGHAM, "Factorization of $N = Y^Y \pm 1$ and $X^{XY} \pm Y^{XY}$," Messenger of Math., v. 45, 1015, p. 40-75.

- v. 45, 1915, p. 49-75.
 16. H. Gupta, Tables of Distribution, East Punjab University, Research Bulletin, v. 2,
- 1950, p. 44.
- 17. G. FONTENE, "Problem 2137 and solution," Nouvelle Annales de Math., v. 13, 1913, p. 383-384.