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1. Introduction. In recent years, a number of methods have been proposed for 
finding the eigenvalues of real, symmetric matrices. The methods of Lanezos [8], 
Givens [3], and Householder [5, 14] reduce the original matrix to a tridiagonal 
matrix whose eigenvalues are the same as those of the original matrix. The problem 
reduces then to finding the eigenvalues of a tridiagonal form. Givens has suggested 
the use of Sturm sequences, and others have used Muller's method [9]. 

In this paper, Rutishauser's LR algorithm and its variants [10, 11] will be 
considered for tridiagonal symmetric matrices. Henrici [4] has shown that for this 
case the LR algorithm is equivalent to the QD algorithm. It will be shown that 
during the iteration procedure, it is possible to determine bounds on the eigen- 
values. Wilkinson [12] has recently considered the problem of determining rigorous 
error bounds after the eigensystem has been computed. 

2. An Inclusion Theorem. An inclusion theorem is one which exhibits a set 
known to contain at least one eigenvalue. A general discussion of such theorems 
is given by Bauer and Householder [1]. We shall now derive an inclusion theorem 
with the aid of the Lanezos algorithm. 

The Lanezos algorithm for reducing a symmetric matrix A to tridiagonal form 
is as follows: 

Let 

xo = 0, the null vector, 

and 

xI = x, a non-null arbitrary vector, 

then 

(1) Xk+1 = AXk -akXk - /k-lXk-1 k = 1, 2, ... , n - 1 

with 

Xk AXk 

(2) ak Xk'Xk 

and 

XkfAXk-4 
(3) /k-1 = k 

Xk1 Xk.1 Xk.I 

It is not difficult to show [cf. 12] that 

(4) xi'xj = O for i j 
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and hence 

Xn,+1- 0. 

If x lies in a subspace generated by p eigenvectors of A, then 

Xp+1 -= ?- 

Then since 

XkIAXk-4 
Ok-I = 

f 
Xk_l Xk-1 

(Xk (Xk + ak-1 Xk-1 + [k-2 Xk-i2) 

Xk1l Xk-1 

Xk Xk O. 
Xk-1 Xk-1 

Now 

(A - akl)Xk - Xk+1 + 3k-lXk-1 

and hence by (4) and (5), 

Xk'(A - i)2X i?x? (Xk'Xk)2 xk (A-ak )Xk =Xk+1 Xk+1 + I 
Xk-1 Xk-1 

Thus 

( 6 ) Xk ( A -Xk I ) =Xk _ k + /k-1 = 2k 
Xk Xk 

with 

0o = 0, o3n = ?. 

The left hand side of (6) is simply a Rayleigh quotient and as such must lie between 
the smallest and largest eigenvalue of (A -kI)2. Consequently, 

min (X, - (k) -k2 _ max (Ki - ak) 
i i 

where Xi, * , X, are the eigenvalues of A. 
THEOREM 1. Let A be a symmetric matrix. Then there is an eigenvalue of A in the 

interval 

(7) ak -ck <X ak + ak 

If A is a symmetric tridiagonal matrix, then for 

XI = 

it is not difficult to compute the coefficients ak and (3k. 
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COROLLARY 1.1. Let 

aij=ai for i-=j 

bm for I i-j j 1, m-min(i, j) 

0 otherwise. 

Then, for the Lanezos algorithm, 
ak ak , 

and 
ok -bk2 

and consequently, the interval 

(8) ak - k _X < ak + ak 

where 
ak - bk + bwL 

contains at least one eigenvalue. 
Corollary 1.1 is a special case of a known theorem [cf. 2, p. 128]. Note that if the 

intervals are non-overlapping then the bounds given by (8) are smaller than those 
obtained by the Gershgorin theorem. 

If the intervals are non-overlapping, it is possible to obtain improved bounds on 
the eigenvalues by using the bounds of Kohn [7] and Kato [6]. 

THEOREM 2. Let 

xi, < xi < ?vu j -1,*.n. 
Then if 

Aj-1 < Xj < Xj+l 
and if 

- 1 < aik < +1X 

then 
2 2 

(9) 7k - k < Xj < ak + k 2, 
Xj+1 ak ak- Xjn1 

Since the coefficients ak are Rayleigh quotients, 

X1 ? min ak 
k 

and Xn > max ak 
k 

In Section 3, the bounds of Theorem 1 will be used. However, the bounds of 
Theorem 2 will be equally applicable. 

3. Application to the LR Algorithm. The LR algorithm proceeds as follows: 
Begin with the given matrix A = Ao, compute a triangular decomposition 

Ao - LoRo, 

and then multiply the matrices in reverse order so that 

A1 = RoLo. 
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Now one treats the matrix A1 in the same fashion as the matrix Ao , and a sequence 
of matrices is obtained by continuing ad infinitum. 

Under certain conditions [10], it is known that Ai converges for i o to a 
lower triangular matrix with the eigenvalues on the diagonal. 

Iet 

ai d(t) O 

1 a~(i) (i) 

1 a2 2~~1 ~2 

(i)(i) 
0 O 1 aen 

If the Gauss-Banachiewicz procedure is used to decompose Ai, then 

Ai= LtRi 
with 

1ui O~) 
I~~~ 

O1 qn1 

e(i)O 

Ri- 

where 
(i) (ai) 

=i O3(O/q M 

(i) (i) (i) q(i _<k -ek4. 

Then since 
Ai+, Ri-Li 

(i ) (i) + q(i) = 1, ** , n - 1 
e k +k 

(10) aCiZ q( 

(3k eek qk 
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If the Lanezos algorithm is performed not with the single vector x1 = x but with 
the infinite set of initial vectors x(;) = A x(i = 0, 1, *), then it has been shown 
by Henrici [4] that the coefficients ak and 1k may be replaced by a) and A(i) and 
that these are the same as those given by (10). Consequiently, Theorem 1 may be 
applied to the LR algorithm. 

THEOREM 3. If the LR algorithm is used uith the Gauss-Banachiewicz decomposi- 
tion then there is an eigenvalue in the interval 

ak ) 0 ki) < X < a() + 

where 

(J(i))2 + :() 

A(i) _ d(X) = 0. 

Since the coefficients ,3"t) will become very small as i increases, it will also be 
possible to use the bounds of Theorem 2. Theorem 3 enables one to stop the iteration 
procedure when the eigenvalues have attained a predetermined accuracy. 

The LR algorithm converges linearly. Rutishauser [11] has shown it is possible 
to attain cubic convergence if A is positive definite and symmetric. The increase in 
the rate of convergence comes about by working with the matrix 

Ai- yi 

and using the Choleski decomposition. In wvhat follows y - 0 for all i since for 
yi # 0 the eigenvalues are translated, and this in no way changes the argumeAit. 

Let 

bWi) a( 

to 2()1 

Then for the Choleski decomposition, 

Ai= RRi R 

with 

p(i) d(i) 0 
M (i) 

P2 

O0 )n 
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where 

(p(i))2= a 

(d(i) )2 = (W() )2/(p(i) 
2 

(k ak=(') d k(d(t) 

Then since 

Ai+j= RiRiT 

=(+1) (p(i))2 + (dk(i)2 . 1, *, n - 1. 

an -(n)X 

(b(2il) )2 (d(i) )2 
(p(i) 

2 

Note that although a Choleski decomposition of Ai was made, it was not necessary 
to compute any square roots. This observation is due to Professor H. Kaiser* of the 
Universityof Illinois. Since eachAi is a tridiagonal matrix, Corollary 1.1 is applicable. 

THEOREM 4. If the LR algorithm is used with the Choleski decomposition then 
there is an eigenvalue in the interval 

ak ?) akt) + (i) 

where 
((i))2 = (bW))2 + (b(i'?-,) 2 

b0() =-b (-O0. 

4. A Numerical Example. Consider the tridiagonal symmetric matrix A with 

ak = k = 1, .. * ,5 

bk= k= 1,.**.,4. 

When the Lanezos scheme is applied to this matrix, 

ak 1, k 1, .,5 

3k =4 k=1 *1 - 4. 

The eigenvalues of A are 

A5 = 1 + 1.8660254038 
2 

4= 1.5 

X3 1.0 

2= 0.5 

I= 1 - 0.1339745962. 

* Personal communication. 
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TABLE 1 

5 15 

k ai 
ak ( i ) ak(*)H 

1 .13566009 2.676 X 10-2 .13397460 3.255 X 10-5 
2 .64318606 2.895 X 10-1 .50011486 7.611 X 10-3 
3 1.2211538 4.520 X 10-1 1.0088091 6.813 X 10-2 
4 1.3750000 4.346 X 10-1 1.5286215 1.306 X 10- 
5 1.6250000 2.602 X 10-1 1.8284798 1.117 X 10- 

TABLE 2 

k Lower Bounds for 
Xk-a(') 

Upper Bounds for Xk-a(i) 

1 -2.955 X 10-9 0 
2 -1.315 X 10-4 1.582 X 10-4 

3 -1.192 X 10-2 9.263 X 10-3 
4 -9.060 X 10-2 3.775 X 10-2 
5 0 7.365 X 10-2 

The LR algorithm with the Gauss-Banachiewicz decomposition was applied to 
A. The results after five and 15 iterations are given in Table 1. Since the intervals 
still overlapped after five iterations, it was not possible to apply the bounds of 
Theorem 2. However, after fifteen iterations the intervals were non-overlapping, 
and the bounds for Xk - ali) are given in Table 2. Note that 

-2.955 X 10_ < Xi - a(15) < 0. 

and thus at least seven places of a are correct. 
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