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Proof. For i = 1, 2,* * n, (x + n-) -i (y + n-i) (modtk) so that 
(x +n-l1)(x +n-2) ... (x)=- (y + n-l1)(y + n -2) ... (y) (mod tk).- 
Also from the definition of t, (n!, tk) = t since t is the product of highest powers 
Of pl, P2, .** p, which are contained in n!. So, 

(x + n -1) ..(x) _(y Jr n -1) ..(y)dk 
fn,24 n n = f, (mod k) 

which proves the theorem. 
It is not asserted in the theorem that tk is the smallest period. In fact, easy 

examples show that in many cases a value for t can be found which is strictly smaller 
than the one specified in the theorem. According to Mathematical Reviews (v. 20, 
1959, Review no. 1653), the smallest period has evidently been found by S. Zabek 
[5] to be tk where 

t = p1"l p2. pq g 

This information may be quite useful in numerically searching for solutions to (5) 
since these congruences limit the number of solutions that could possibly exist, 
thereby reducing the amount of machine time needed for the search. 
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Note on Osculatory Rational Interpolationt 
By Herbert E. Salzer 

Abstract. In n-point osculatory interpolation of order ri - 1 at points xi, 
i = 1, 2, * * , n, by a rational expression N(x)/D(x), where N(x) and D(x) are 
polynomials E ajx' and E bjxj, we use the lemma that the system (1) 
{N(xi)/D(xi)}(m) = f(m)(xi) m = 0,1, * .. , r- 1, is equivalent to (2) N(m)(xi) = 
{f(xi)D(xi) (m), m = O, 1, . . . , ri - 1, D(xi) # 0. This equivalence does not re- 
quire N(x) or D(x) to be a polynomial or even a linear combination of given func- 
tions. The lemma implies that (1), superficially non-linear in aj and bj, being the 
same as (2), is actually linear. For the n-point interpolation problem, the linear 
system, of order E.Li ri, which might be large, is replaceable by separate linear 
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systems of orders ri (or even ri + ri+1 + * * * + ri+j when conveniently small) by 

applying the lemma to the continued fraction (3) N(x)/D(x) = al,o + X- Xi + 

x-xiI x _____ ____ _____~~~~~~~~~~~~~~~I 
,, 

X- X1I+ + -Xli X-X1I +X-X21? X-X21 +X-X2 I 

I al,2 1 al,r7-i I a2,0 1 a2,l j a2,+21 1 a3,O 

x-x nI1 
+ x-x -i + + X-Xn . In (3), which has the property (proven 

I an, 
+ 

1an,1 Ian, rn-1 

in two ways) that the determination of ai,m is independent of all a's that follow, we 
find ai,m stepwise, but several at a time (instead of singly which is more tedious), 
retrieving them readily from the solutions of those lower-order linear systems. 

1. Introduction and General Lemma. In n-point osculatory rational interpola- 
tion for a given function f(x) by N(x)/D(x), where N(x) = E a jxj and D(x) = 
E bjxj, we have to find the coefficients ai and b1 from the following d = 

conditions: 

(1) d"{N(x)/D(x)}/dxm I X = f(m)(xi) m = 0, 1, * , ri -1 
= 1,2, ... ,n. 

The N(x) and D(x) are usually taken to be of nearly equal degree, i.e., for odd d, 
both of degree [d/2], and for even d, of degree [d/2] and [d/2] - 1 respectively. 

One answer to (1) is provided by Thiele's reciprocal difference formula for 
confluent arguments [1]. But that requires the build-up and tabulation of a recipro- 
cal difference scheme involving confluent forms, which might be too cumbersome to 
handle for a large total number of conditions. The present approach considers a more 
direct solution of (1), and avoids confluent reciprocal differences. 

Whenever in (1) some ri > 1, the determination of aj and bj after differentiation 
of the left member, appears offhand to involve the solution of a non-linear system of 
equations. In reality, (1) may always be solved by an equivalent linear system. 
Before citing the general lemma which establishes this equivalence, it is instructive 
to verify the first few cases. Let N and D denote any functions of x, not necessarily 
linear combinations, the subscript i denote the argument xi, and Di - 0. 

Ordinary rational interpolation, (N/D) = fi, is, of course, equivalent to N, = 

(Df)i . 
First-order osculatory interpolation, 

(2) (N/D)i = fi, (N/D)i' = fi', 

may be expressed as Ni = (Df)i and Ni'/Di - ND'!/D 2 = fi'. In this last equa- 
tion, replace Ni/Di by fi and multiply by Di, so that (2) is replaced by the eqiziva- 
lent 

(2') Ni= (Df)i, Ni' = (Df)i'. 

Whenever N and D are linear combinations of specified functions, the system (2') 
is linear in the coefficients. 

Similarly, for second-order osculatory interpolation, namely, 

(3) (N/D)i = fi, (N/D)i' = fi', (N/D)i" = fi", 

carrying out the differentiation in the last equation of (3), in view of the equivalence 
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of the first two equations in (3) to (2'), we find (3) to be equivalent to the system 

(3') Ni - (Df),,, Ni' = (Df)i', Ni" = (Df) i. 

The foregoing equivalence relations suggest this general lemma for any N and D, 
as long as Di # 0: The system 

(4) (NI/D)(m= fm) m M O, 1, ... , r, 

is equivalent to 

(4') NMm) (Df)(m) m = 0, 1, *-- ,r. 

The proof is immediate by induction. Assume the equivalence of (4) and (4') up 
to order r -1. Then first assume (4'), and apply Leibnitz's theorem to both (4') 
just for m = r and to Mr) = { (N/D)D} (r). In the former, replacef (m) by (NID) sm) 
m = 0, 1, * , r - 1. Comparison of terms shows that (N/D) r) fir) so that (4') 
implies all of (4). Conversely, starting from (4) and applying it to the Leibnitz 
formula for Nr) -={ (N/D)D} Dr we obtain the equation in (4') for m = r, which 
establishes all of (4'). 

A discrete case analogue of this lemma (i.e., for finite differences or divided 
differences, instead of derivatives) is established even more readily. Thus the equal- 
ity of the differences of NID andf at xi implies that (N/D) i = fj at every xi of the 
total - ri points (assume now that every Di $ 0), from which follows the 
equality of N1 and (Df)j which, in turn, implies the equality of the-differences of 
N and Df at every xi . The lemma above is seen to be a limiting confluent case of 
the finite difference analogue. 

Application of the lemma to (1) reduces the general problem of osculatory 
rational interpolation to the solution of just a linear system for the a1 and bj , which 
is thus not harder than the problem of osculatory polynomial interpolation. It is 
apparent from the inductive process in the proof of the lemma that (unlike the 
polynomial case) we could not expect to obtain a linear system from any modifica- 
tion of (1) where m either fails to start at 0 or to run consecutively, even at just a 
single point xi,. 

By this lemma, even when N(x) and D(x) are not polynomials, but linear com- 
binations of preassigned known functions ij(x) in place of xi, we may replace the 
system (1) by the equivalent linear system 

(1') Nm) (xi) = d {D(x)f(x)}/dxm I, 
i= 1,2, -n, 

where every D(xi) 5 0. 

2. Application of Lemma to Continued Fraction Interpolation. From now on 
we shall consider just the most important case when N(x) and D(x) are poly- 
nomials. The lemma may be applied to solve (1) or (1') by a number of linear 
systems, each of much lower order than that of (1'), namely, E.=l ri, which might 
be inconveniently large, by the method described below. 

We may express N(x)/D(x) in (1) as the continued fraction 
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N(x)/D(x = alo + Z-x iI + x-xlI + ... +x-xlI + x-xlI 
I a1,, I al,2 

j 
a,rii I a2,0 

(5) +x-X21 + +x-x21 +x-x21 + 

I a2,l la2,r2.1 la3,0 

+ x 
- 

Xn I+ 
X - Xn I X - Xn| 

I an,O | anj lan,rn-1 

Now (5) has the useful property that each coefficient ai,m which may be found from 
(1), involves just the preceding coefficients aj,k and is completely independent of 
every following aj,k . This property may be seen from the limiting confluent form of 
Thiele's continued fraction formula in terms of reciprocal differences [1]. Another 
direct way to establish this property without employing the Thiele reciprocal dif- 
ference scheme, is by induction upon (5). Thus, at any xi in (1) and (5), the in- 
terpolating equation for the next higher order derivative, say the mth, may be shown 
to involve ai,m as the only new quantity, provided that the same is true for all 
coefficients preceding ai ^, likewise down to ai,ri-1, then ai+1,o is found from the 
value of f(xi+?), and so on down to an,r-l . By inspection, this property holds for 
the first few coefficients al,o, a1, , which suffices to complete the induction. 

To apply this property, we recall the procedure in the special case of (5) when 
every ri = 1 (i.e., ordinary rational interpolation) and each ai,o is found from 

(6) f(xi) = pi(xi) _ ai,opi_1(xi) - (xi - X)pi_2(Xi) 

qi(xj) ai,oqi_(xi) + (xi - xi-)qi-2(Xi) 

where pi(x) and qi(x) denote the numerator and denominator of the ith convergent 
[2]. (We may differ here from some standard notation by referring to al,o in (5) as 
the first, instead of the zero-th convergent.) 

The same idea as in (6) can be used for the stepwise determination of the entire 
block of ri coefficients ai, 0, aij1, * * *, ai,ri-1 simultaneously. Assuming that from 
knowledge of a1,0, a,1,, ..., ai_,ri_,_1 we have found in (5) the convergents 
p8_1(x)/q,_1(x), p,s2(x)/q.s2(x), where s - 1 = .1 rj. Then 

(7) N(x)/D(x) = Ri(x)p.-1(x) + (x -x,)p.-2(x) IVYU)LJkJ) 
Ri(x)q.,i(x) + (x - 

x-).2X 

where 

Ri(x) = ai,o + - XiI + _- xi + 

(8) 
a I 
aia2 

X - Xi Ix 
- 

xi x 
- 

xi+1I + x 
- 

Xn+I 

ai,ri I ai+i,o I a*1,1 lan,rn- 

We may neglect that part of Ri(x) which proceeds from X Xi I + * in determin- 
I ai+,,o 

ing ai,o, ai l, i , ari from the ri osculatory interpolating conditions on (7) at 
x - xi. Denoting that truncated Ri(x) by Ri*(x) = Si(x)/Ti(x), we apply the 
general lemma at x = x+, finding first the coefficients of the polynomials Si(x) and 
Ti(x) to satisfy 
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ISi(x)p3-1(x) + (x -xi-l)T,(T)p8s2(X)}j() I,xi 

(9) = [f(x){Si(x)q,-8(x) + (x - xi.i)Ti(x)q8-2(x)}](m) x=_ij 

m = O, 1, ri1 

The next operation is to retrieve the coefficients aso, ** , as,ri-1 from those of Si(x) 
and Ti(x). Finally, the convergents to (5), p8(x), q8(x), p3+1(x), q8+,(x), are 
found by the usual recurrence scheme 

( 10) ps+t(x) = ai,t ps+,t-(x) + (x 
x 

i-,) ps+t-2(X), for t- 01 
(x -xi) for t =1(1)ri 1 

( 10') q.+t(x) = ai,t q8,+t.(x) + (x _i-)) t-2(x), for t -0, 
(x -xi) q8+t- for t = (1)rj 1. 

The cycle of (9), retrieval of coefficients ai,m and (10), (10') is repeated, but with i 
replaced by i + 1 and s replaced by s + ri, etc. For a succession of smaller values 
of ri, say ri = 2, ri+i = 3, it may be convenient to apply (9) at several points 
at once. 

This procedure, which involves the solution of a number of separate linear sys- 
tems of orders ri(or ri + ri+1 + * + ri+, when fairly small), is an intermediate 
one between that of solving for all D., ri coefficients of N(x)/D(x) at one time, 
where the linear system may be inconveniently large, and that of solving for each 
separate coefficient ai,m in (5), from an equation like the following, when m > 0, 

(11 ) 
f) (Xi) = {aimPr,(X) + (X - Xi)pr_l(X)}(m) |Zi+1 

ai,m qr(X) + (x - xi)qr-I(X) ) =i j=1 

SCHEDULE I: Si(x)/Ti(x) 

Si(x) Ti(x) 

t aO 1 

2 aao + (x-xi) a1 

- a2alaO + (a2 + ao) (x - xi) a2aI + (x - xt) 

4 a3a2aiao + (a3a2 + a3ao + a1ao) (x - xi) a3a2al + (a3 + a,) (x - x) 
+ (X - X,)2 

r) a4a3a2aiaO + (a4a3a2 + a4a3ao a4a3a2a, + (a4a3 + a4a2 
+ a4ala0 + a2a,ao)(x - xi) + a2a ) (x - xi) + ( -; j) 

+ (a4+ a2+ ao)(x - xi)2 
6 a5a4a3a2ajao + (a5a4a3a2 + a5a4a3ao a5a4a3a2ai + (a5a4a3 + a5a4al 

+ a5a4aiao + a5a2aiao + a3a2aiao)(x + a5a2a, + a3a2a,)(x - xi) 
- xi) + (a5a4 + a5a2 + a5ao + a3a2 + (a5 + a3 + a,)(x -xi)2 
+ a3ao + a1ao)(x- x)2 + (x - xi)3 
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(remembering now that we must retain the denominator in the right member of 
(11) because it is for a single m) and finding N(x) and D(x) from (10), (10'). 
Since there would be E.- ri such equations (11), that is likely to involve more 
work than the present scheme. 

In using (9) at just a single point xi, Si(x) and Ti(x) are kept in terms of 
(x - xi)', whereas p1_1(x), q8i-(x), p8_2(x) and q._2(x) are in terms of x'. After 
retrieving the coefficients aim , it is natural to obtain pa+t(x), q8,+t(x) from (10), 
(10') in terms of x', then Si+1(x) and Ti+?(x) are found as polynomials in x -xi+, 
etc. 

For the convenience of the user we list in SCHEDULE I the explicit expressions 
for Si(x) and Ti(x) as polynomials in (x - xi), for ri= 1(1)6, and the sequence 
of operations for retrieving the coefficients ai,m . For the sake of brevity we write, 
from now on, am for aim. 

Denoting the coefficients of (x - xi)j in Si(x) and Ti(x) by a, and f3j respec- 
tively, the coefficients am are retrieved as follows: For ri = 1 and 2, obvious. For 
r= 3, ao =- oo/#o, a2 = a1 - ao a, 3 f3o/a2 . For ri = 4, aO = ao//O , a, = 13o/(a, - 

a0f31), a3 = - a,, a2 = (a, - aOl)/a3 . Forri = 5, aO = ao/1o , a, = 3o/(ai -ao#,), 
a2 = (ai - ao01))/{ I3 - a,(a2 - ao)}, a4 = a2- ao - a2 , a3 = {1 - al(,a2 - ao) 
/a4. For ri = 6, ao = ao/o3o, a, = 1o/(al - aoi3), a2 = (a1 - ao#1)/{i3 - 

al(a2 - aO2)}, a3 = {- al((a2- a012)}/{ a2 -(ao + a2)(132 - a,) - alao}, a5 = 

32- a3- a,, a4 = Ia2 - (ao + a2) (#2 - a,) -alao} /a . 
The retrieval process assumes that every am 0 0 for m 0 0. But, we may have 

ao = 0, and every retrieval step still goes through. 
It seems likely from the above (verification left as an exercise for the reader) 

that for any ri there is a general procedure for retrieving ao, al, * , ari-3, ar7-, 
ari2, in that order, from the Euler-Minding formula [3], according to which 
Si(x) and Ti(x) have these explicit expressions: 

0,ri-2 

Si(x) aoa, .. art-i 1 + E- (X-xi)lajaj+ 

O,ri-3 

(12) + E E (X -Xi)2/aj aj+1 ak+1 ak+2 
j<k 

0,ri-4 - 

+ E E E (x- x)3/a aj+lak+1ak+2az+2az+3 + 
j<k< Z 

and 

Ti(x) = a,a2 ... a7 1 + E (x -x)ajaj+ 

(13) 
1,ri-3 

+ E E (x - xi)2/aja;+1ak+1ak+2 + 
j<k 
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