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On Solving y" - fy + g with a Boundary 
Condition at Infinity 

By Charlotte Froese 

Consider the class of differential equations 

(1) Y= f(x)y + g(x) 
for which 

(i) g(x) -+0 as x- oo 

(ii) f(x) > 0 and f(x) -c as x -x, 

together with the boundary conditions, 

(iii) y(a) = yo and y(oo) = 0. 

Suppose further that a numerical solution is required over the range (a, b) where 
b is such that I y'(x) I < r, for all x > b. 

For large values of x, one solution of the equation tends to infinity whereas the 
other tends to zero; the latter is the desired solution. Because of round-off and trun- 
cation errors which are inherent in a numerical procedure, any outward integration 
will introduce some of the former solution into the calculation, so that the numeri- 
cal solution will not tend to zero but eventually increase exponentially. This diffi- 
culty may be avoided by determining the solution at some large value of x from an 
asymptotic expansion, for example, and integrating inwards. It is avoided more 
simply by the procedure to be described, particularly when the inward integration 
cannot be started readily and the range (a, b) over which the solution extends is 
not known in advance. 

Let 

xi=xo + ih, xo = a, 

and define yi to be the computed approximation to y(xi); yo is known and Yi, ,2 

are to be determined. 
It is well known that 

(2 )yi = h2 (Yi" + y1 Yi") + 0(h6). 

Substituting for y" from (1) and neglecting terms which are 0(h6), we may rewrite 
(2) as a system of equations 

-b1 a2 y oy i 
a, -b2 a3 FY")C 

a2 -bN i = a- cy | 
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where 

h2 a, = 1 f- 

= 2 +!2h2f~ 102 

and 

Ci = 12 (9i+i + lOg1 + gi-1), 

or, in matrix form, A Y - C. The matrix A has a tridiagonal form so that the system 
of equations may readily be solved by the Gauss elimination method. An algorithm 
in this case is given by equations (3) and (4): 

di= -b1 d=- b,- (ai-lai/di-1) 
(3) 

zi = cl - aoyo Zi = C- (ailzi1/dii) 

and 

(4) Yi = (zi -a+yi+,)/di. 

Unlike the standard case, the order N of the matrix is not known in advance but 
depends on the solution. For f(x) > 0 and h sufficiently small, it can be shown that 
di -1 + 0(h) as i increases and obviously ai = 1 + 0(h2). Thus, for i suffi- 
ciently large and h sufficiently small equation (4) becomes 

yi+i - Yi Zi, 

or 

Z, hyi' 

Therefore, if we solve equations (3) for i = 2, 3, , N successively until I zN I< hr 
followed'by (4) with i - N, N - 1, - , 1 we will have obtained a solution over 
the desired range. The solution of (4) when i = N requires an approximation; the 
simplest is 

(i) YN+1 = O. 

A more accurate assumption is 

(ii) YN+1 = CYN , 

where C is determined from an asymptotic expansion. Then 

YN = ZN/(dN + aN+lC). 

The above boundary conditions are frequently associated with eigenvalue prob- 
lems. An example is the Hartree-Fock equation for an electron, 

it= -2 Y(r) + ( + 1)) p-r 

Here e is an eigenvalue and a solution of the problem may not exist for an arbitrary 
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choice of E. The usual procedure is to divide the range of integration into two parts, 
integrate outwards for a solution satisfying one boundary condition, integrate in- 
wards for a solution satisfying the other boundary condition, match the solutions at 
an intermediate point and adjust E so that the derivatives also agree [1], [2]. The 
inward integration may be avoided with the procedure described earlier. A con- 
venient way of dividing the range is according to the sign of f(r). For some r, 
f(r) < 0 so that condition (ii) is not satisfied: the procedure described here is not 
always numerically stable when f(r) < 0 [3]; in fact, for some values of i, I d, I < 1. 
Of a series of standard methods, the Numerov method, 

Yn+? ((2 + 12 hfn) yn -1 - 12fn_i Yn-1 

+ 
h 

(9n+1 + 10gn + gn-1)) (I -h fn+l 

was found to be most accurate in this case, for a given number of evaluations of f 
for the outward integration. The procedure used successfully was to integrate out- 
wards according to (5) until f(r) > 0, then, with the last value computed as a boun- 
dary condition, to solve for the "tail" of the wave function by the method described 
here. The energy adjustment will be the same as before. 
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On the Inversion of Sparse Matrices 

By A. L. Dulmage and N. S. Mendelsohn 

1. Introduction. There are a number of problems in applied mathematics involv- 
ing many equations in many unknowns, but for which each equation involves only 
a small fraction of the unknowns. If such problems are linear or are approximated 
by linearization, one is involved with a matrix, a large proportion of whose entries 
are zero. To invert such a matrix A it is sometimes advantageous to permute the 
rows and columns of A yielding PAQ where P and Q are permutation matrices. If 

jAl ? 
A2 

PAQ= 

Ar. 

where A1, A2 , * Ar are square matrices, the problem of inverting PAQ is reduced 
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