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1. Introduction. A number of important statistical distributions can be ex- 
pressed in terms of the normalized incomplete gamma function [1], [2] 

(1) Ga(x) = r(a, x)/r(a) = L e Gt dit I - y(a, x)/r(a) 

which is also sometimes referred to as the partial or incomplete Poisson stim: 
a-1 a-1 

(2) Ga(x) = Ea- E e-Zxx/n! ZHG(x) 
n=O n^=O 

when a is an integer. 
Single and double precision FORTRAN subroutines have now been written 

to evaluate Ga(x) and Ha(x) for all real values of the parameters equal to, or 
greater than zero [3], [4]. 

The purpose of this paper is to give brief details of these subroutines and to 
show how they can be used for evaluating the probabilities from two distributions 
of importance in Operations Research: namely, the generalized Poisson [5], [61, 
and the Morse-Jewell distribution [7], [8], which are respectively the synchronous 
and asynchronous counting distributions for an Erlang process, [9]. 

2. Calculating the Poisson Term HIa(x). In the double-precision subroutine, 
Ha(X) is calculated logarithmically by the formula 

log Ha(x) - -x + a logx - log 11(a + 1) 

= (a - x) + a log (x/a) - 2-log (2i7ra) -Series B 

for all values of a ? 8. Here 

(4) Series B = B1 2 B2 
1 *2a 3.4a3? 

comes from the extended form of Stirling's approximation [10] in which B1 , B., 
are the Bernoulli numbers 6, wo-, up through B7 = (-. For a < 8, Hla(x) is calculated 
from 

(5) Ha(X) = Hw(x)w(w - 1)(w - 2) ... (a + X)Xa- 

where w = (8 + 0) with 0 = a - [a] = the fractional part of a, when a is not 
an integer. 

In the single-precision subroutine, the generalization to non-integral values of 
a, (a _ 40) is accomplished by means of the expression 

-X 0 

(6) Ha (X) = e X HT x/(a -n) 
_______ 17~~~~(1 + 6) O!~n<[a] 
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12 JOHN R. B. WHITTLESEY 

where T(1 + 0) is evaluated by using one of Hastings' polynomial approximations 
[11]. 

3. Evaluating the Incomplete Gamma Function. Below are listed four methods 
for evaluating Ga(x). Three of them make use of the Poisson term, Ha(x). The 
fourth evaluates Ga(x) for very large values of the parameters. 

A. Convergent series [12]: 
00 

Ga(x) = 1 - Ha1(x) >: Tn 
n=o 

where 

To= 1, and Tn = Tn-1 for n > 0. 
a + n 

B. Asymptotic series [12], [13]: 

Ga(X) =- Ha(X) E Sn 
X n-0 

where 

So =1 and Sn = a- Sn-1 

so lo- g as ! Sn/Sn-1 I < 1 except when a is an integer. 
C. Method of continued fractions [14]: 

Ga(X) = Ha(x) __ a, 

bi + a2 

b2 + -- asw 

b3 +... 

where 

a, a(a - IX2 

an (n-1)(a-n)/x2 for n > 1 

and 

bn =(x + 2n-a)/x for n > 0. 

D. Gaussian limit: For very large values of the parameters, a Gaussian ap- 
proximation to the normalized incomplete gamma function is achieved by means 
of a series of successive approximations to z, the Gaussian variable of integration. 
First let zo = (x/a)"I3 after Wilson and Hilferty [15]. The moments for this variable 
are given by Abdel-Aty [16]. When written in terms of the transformed parameter 
b = 9a, they become: 

(7) = 1-b + 1b0 + 1b1 + (7) /~~~~1 
='~~ +V 

+ 
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1 13 10 
(8) 2 3b3 b4 + 

4 16 
(9) -3=b + b6+.. 

(JON ~~~~2 1 6 
(10) p4 = -b3-b4 + 

The second approximation is 

(11) Z1 = (Zo -l1)\A2 

taking terms through O(b-3). 
Finally 

(12) 1 f2(zi' - 1) _2 (Z13 - 3z,)l (12) 2 1 
~~~3b{ b1/2 4 } 

is obtained by the method of Severo and Zelen [17] which uses A3 and /4 through 
0(b-3) in the Gram-Charlier and Taylor series expansions to obtain a small further 
correction to z, . Figure 1 shows the error curve for this approximation when a = 

30000. 
An estimate of the maximum error from equation (12) can be gained by in- 

serting the true value for the median 

(13) xm = a- 1 + b + 0(b ) 

(from Pearson [18]) into the expression for Z2. This gives 

(14) z2(xm) = b312 + 0(b-512). 

The maximum error in Ga(x) is then approximated by 

(15) Z2(xm) *Gaussian ordinate (at z = 0) 

which for a = 30000 equals .57. 10-9, in good agreement with the maximum error 
from Figure 1. 
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FIG. 1.-Error curve for Gaussian approximation when a = 30000. 
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4. Choice Amongst Methods. Figure 2 shows the regions selected for methods 
A, B, C, and D. Below are given the values for the constants Al, A2, ... A7 and 
the reasons for their choice. 

Al) Methods B and C are both capable of giving correct results in the region 
x > a > A4, (z > A7). Al depends on their relative efficiency in this region and 
was set equal to 200 in both the single and double-precision subroutines. 

A2) is determined by the point at which the terminating series for integer 
values of a, method B, requires, on average, more terms than the non-terminating 
convergent series A for values of x < a. In the single-precision subroutine (working 
to 6 significant figures) it was set at A2 = 20; in the double-precision subroutine 
(working to 10 significant figures) at A2 = 75. 

A3) When x is much smaller than a, there exists the possibility that method 
B will arrive at an overflow condition before it terminates at the ath term. This 
will happen on the IBM-7090 when Sa-i = (a - 1)!/Xa-1 is allowed to exceed 
105. Overflow in this situation is adequately guarded against by substituting 
method A for method B whenever x is less than a(a -1 )/A3, A3 = 500, a _ A2 . 

A4) When a is a small non-integer, the asymptotic series of method B may 
begin to diverge prematurely. To prevent this, A4 is set at 13 in the single-pre- 
cision subroutine, and in the double-precision at A4 = 23. 

A5) and A6) determine the region for the Gaussian approximation. The number 
of terms required for the most applicable of methods A, B, and C decreases with 
increasing I z 1, but increases with a. To obtain 6-place accuracy A6 should exceed 
300, and for 9-place accuracy it should be greater than about 30000. A5 was set 
equal to 5.5 to prevent floating-point overflow in the convergent (double-pre- 
cision) expansion for Erf(z). 

A7) For small positive values of z, method C begins to become inaccurate as 

REGIONS OF x 

I < x SAt x >A, 

o~~~~x <I xa I > x h< a x xa_ 
REGIONS OF a . - -. . .~ .: 

INTEGER a AB* B 

-o 

< 

a A2 1 - II Ga(x)=O E 
NON-INTEGER a AB C 

a>A 4~G0( B1 C*!~ a > Al? Ga2x~ A B AlDl D 

Fi(.. 2.-Choice of method as a function of regions of x and a. 
* Method B used rather than method A when x > a(a - 1)/A3 

Method C used rather than method B when (a + x) < A4 and when x > Al, z > A7(a) 
or z > A5 

** Method D used when a > A6 and I z I < A. 
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a grows large. To exclude this region in the double-precision routine, A7 was set 
equal to the smallest among the following expressions in a: 

0.7 + .037 a112 

3.0 + 7.0 10 5a 

3.5 + 3.3'10 5'a 

as a function of a. Method B was then used in place of method C whenever z < 
A7, x > a, a ? A6 

5. Probabilities for an Erlang Process. The probabilities of exactly n events 
from a generalized Poisson distribution [6], [19] are given by 

(16) Pn(k, x) = Gnk+k - Gn k 

and for the Morse-Jewell distribution by [9] 

(17) Qn(k, x) = Ain (n(Gnk + Hnk) - k Gnk) = _ f Gnk(t) dt 

where An2 is the second-order central difference operator with respect to the index 
n, and Ga = Ga(x) and Ha = Gar+i - Ga. 

A FORTRAN subroutine, QPROB, for evaluating Q - Qn(k, X) is given in 
Figure 3. D2 produces the second-order differences as U goes from 1 to -1. For 
details of GAMA see reference [3]. 

In the limit when k and x go to infinity as a fixed ratio 

(18 Q 1 - n, for k- n < 1 
(18) Qewr k 

For the generalized Poisson distribution, the limiting probabilities are approx- 
imated by: 

(19) = F&Lfze-/2dt, with a = nk + k, for n _ 
- .5) 

_ f e-e /2 dt, with a = nk, for n > -5 

ITERATE 

DO 100 J=1, 3 

A= (V+ U) * W 

ENTER V - n CALL GAMA (A,X,G,HER) EXIT 

OPRB 
w _ 1 .GU=(V+U)*(G+H)-X*G/W RETURN 

Q - O. D2=3.* U ** 2-2. 

U=U-I. 

100 Q=Q+D2*GU 

FIG. 3.-FORTRAN subroutine. 
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TABLE 1 

x/k k = 5 k = 10 k = 25 k = 50 k = 100 k = 200 k = 500 k=1000 

.25 Q 3.1 4.8 - - - - - - 

P 2.0 3.6 7.8 

.50 Q 1.6 2.4 4.1 6.6 
P 2.8 4.4 4.4 6.2 

.75 Q * * 1.9 2.6 3.8 5.8 _ 
P 2.4 2.9 3.7 5.0 4.9 6.2 

.95 Q * * * * 1.4 1.7 2.3 2.8 
P 1.7 2.9 3.4 3.8 4.1 4.4 

1.05 Q * * * * 1.4 1.7 2.2 2.8 
P 1.4 2.3 3.8 4.8 4.8 4.8 

1.25 Q * * 1.6 2.2 3.1 4.7 
P * 1.5 2.9 5.1 4.9 5.7 

1.50 Q * 1.5 2.4 3.5 5.5 
P * * 1.9 3.0 5.3 

1.75 Q * * 1.3 1.8 2.5 3.6 6.3 
P * 1.7 3.0 4.3 6.0 5.5 6.8 

1.95 Q * * * * * 1.4 1.8 2.2 
P * 1.8 3.7 4.2 4.5 

2.05 Q * * * * * 1.4 1.8 2.2 
P * 1.5 3.0 5.2 5.0 

2.25 Q * * * 1.6 2.3 3.3 5.6 
P * * 2.0 3.4 6.0 5.5 6.6 

2.50 Q * 1.3 1.9 2.8 4.1 6.5 
P * * 1.3 2.0 3.3 5.8 

2.75 Q * * * 1.4 2.0 2.8 4.8 
P * * 2.1 3.4 5.1 5.7 6.6 7.5 

2.95 Q * * * * * 1.3 1.6 2.0 
P 1.4 2.7 4.4 4.9 - 

The first line of each entry gives minus the log10 of the Max. (over all n) of 
-Qn- lim Qn . For a given k, the differences Qn - lim Q, I are least for x/k 

near an odd half-integer or zero. The second line gives - logo Maxn I Pn- 
rim Pn 1. Points where the differences exceed .05 are marked with asterisks (*), 

points where they are smaller than 10-8 are marked with dashes (-). 
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where z is obtained in terms of a and x from equation (12). 
Actually, in the extreme limit, the synchronous Erlang counting probabilities 

become 

(20) p for k 
0, elsewhere 

since identical gaps of length k/x are then being counted. 
Table 1 evaluates the goodness of fit of these limiting forms for various values 

of k and x/k. 
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