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1. Introduction. In an earlier paper [1] the system of nonlinear differential 
equations governing the transient motion of a cable immersed in a fluid was formu- 
lated and solved by finite difference methods. Although the solution was framed 
in quite general terms and included a) motion in two dimensions, b) large displace- 
ments, c) forces due to weight of the cable, buoyancy, drag and virtual inertia, 
and d) nonuniform properties along the cable, the formulation was restricted in one 
sense. It was assumed that the cable was inextensible (cannot be stretched). In 
the present paper this restriction is removed. In addition to the conditions listed 
above, the cable is assumed to possess elastic properties. 

2. Governing Equations. The equations governing the motion of an elastic 
cable moving in a fluid medium are equivalent to those derived in reference [1], 
with the exception of equation (2.6) [1, p. 32]. In the case of a cable with elastic 
properties this relation is replaced by an expression for Hooke's law. The complete 
set of governing differential equations is given here, with definitions of the nota- 
tion used. A discrete representation of the cable (in which the distributed mass of 
the cable has been replaced by a series of masses mj, attached to weightless elastic 
links) has again been used as in the original formulation of the problem. This is 
considered to be the simplest approach, since the method of finite differences, both 
in space and time dimensions, is used in the solution. Before listing the equations 
we also restate the generalized conditions which are used as the basis for the formu- 
lation of the problem: 

a. The motion is transient (time-dependent) and takes place in two space 
dimensions. 

b. The occurrence of large displacements from the equilibrium configuration 
of the cable is permitted. 

c. The cable is elastic. 
d. The cable is immersed in a fluid, requiring the inclusion of forces due to 

buoyancy, virtual inertia and drag. 
e. The extremities of the cable may be at different levels with the cable sagging 

between the positions of support. Weight of the cable is taken into account. 
f. Finally, provision is made for nonuniformity of the cable and for the suspen- 

sion of concentrated loads, such as an anchor, at one or more positions along the 
cable. 

The equations of motion may be written as follows: 

(1) Ixj - Kjj = Tj+112 cos Oj+1/2 - 1/2 cos Oj-1/2 + Xi 

-KjI/j + JjJh = Tj+112 sin Oj+1/2- T.1/2 sin Oj-1/2 + Yj 

Received September 7, 1962. 

60 



MOTION OF ELASTIC CABLE 61 

where 

I = mj + (ej+l/2 Sin2 j+1/2 + ei-l/2 sin 2 Oji-/2) + m X 

Jj = mj + 1(ej+l/2 COS2 ij+1/2 + ei-l/2 COS Oj1-/2) + mj 

Kj = 4 (ej+l/2 sin 0j+1/2 COS ?j+1/2 + ei-l/2 sin Oj-1/2 COS Oj-1/2) 

Xi = -4[Dj+1/2 sin 0j+1/2 + Di-1/2 sin Oj-1/2] + Xi* 

Yj = 4[Dj+?12 cos Oj+1/2 + DJ-l/2 COS Oj-1/2] + Yi - TVj-W 

and 

Mj = 2[gj+1/21j+1/2 + /Li-1/21j-1/2] 

ej+l/2 = pkj+l/21j+l/2?2j+l/2 

Mj = mj + p V j 

Mj Y = mj* + pVjY 

cos Oj+l1/2 = (xj+l -_ - xj)2 + (Yj+l - Yj)2]1/ 

sin Oj+1/2 = (Yj+l- Yj)/[(Xj+l - xj)2 + (Yj+l _ yj)2]1/2 

Wi = mjg - 1pg(lj+l/2crj+l/2 + lj-1/2j- 1/2) 

Wj* = mj*q-pgVj* 

Dj+1/2 = -fj+1/2qj+?l2 I qj+1/2 

Xj* = fjXuj(j - c) 

yj* =-f J YUj 
Dj = -J 

ujCD 
f+/2 - =PCi+1/21j+1/2 dj+l/2 

qj+1/2 = -2(?R j+- C) + (Xj - c)] sin ij+1/2 + M[?j+ + 9i] cos Oj+1/2 
j x = pjXS.X 

f 3 2PC i 3j 

fX 

lpc1XsjX fY -1~cY~ 
uj = [(x= - c)2 + fj2]1/2; 

(2) Tj+12 = 'j+1/2Ej+l/2 [/(Xj+l 
- 

xj)2 + (yj+l yj)2 _ 
Ij+1/2 

In addition, in order to define a solution, boundary conditions 

xO =xo(t), Yo = yo(t) 

XS= x(t)) Ys = Y8(t) 

and initial conditions, 

xj(O) = xi?, yi(O) = y3? (j = 1, 2, - s-1) 

?3(O) = xt?, qi(O) = y ? (j = 1, 2, * * - 1) 

must be included, where the superscript index "O" is used to designate a value at 
the origin in time. 

The definition of the symbols used are given below: 
C7+1/2 Drag coefficient for segment of cable between stations j and j + 1 
Cfx Resistance coefficient for horizontal motion of suspended prism 
CjY Resistance coefficient for vertical motion of suspended prism 
c Velocity of uniform horizontal current 
D Drag 
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dj+1/2 Diameter of segment of cable between stations j and j + 1 
Ej+112 Young's modulus of elasticity 
ej+1/2 Virtual mass of entrained fluid between stations j and j + 1 
f?+1/2 Drag factor for cable = (p/2) C+1,2lj+l/2dj+l/2 
fiX Horizontal drag factor for suspended prism = (p/2) C0axSX 
f.7 Vertical drag factor for suspended prism = (p/2)Cj7Sjy 
q Acceleration due to gravity 
Ij Component of inertia tensor 
i Imaginary unit 
J3 Component of inertia tensor 
j Subscript denoting station number along line 
Kj Component of inertia tensor 
kj+1/2 Virtual inertia coefficient for segment of cable between stations j and 

j + 1 
lj+1/2 Length of line between stations j and j + 1 
mj Mean mass of segments of cable adjoining station j 
mj* Mass of prism suspended from station j 
mj X Effective horizontal mass of suspended prism 
Min Effective vertical mass of suspended prism 
q Normal component of velocity of cable (relative to medium) 
SjX Projected area of suspended prism along x-axis 
SV, Projected area of suspended prism along y-axis 
s Subscript denoting surface end of line 
T Tension 
t Time 
u Magnitude of velocity of cable (relative to medium) 
Vj* Volume of prism suspended from station j 
V i Equivalent volume of horizontal virtual mass of suspended prism 
Vj} Equivalent volume of vertical virtual mass of suspended prism 
Wj Mean net weight of segments of cable adjoining station j 
Wj* Net weight of prism suspended from station j 
X Horizontal component of resultant external force 
Xj* Horizontal component of damping force on suspended prism 
x Horizontal coordinate of cable 
Y Vertical component of resultant external force 
yj* Vertical component of damping force on suspended prism 
y Vertical coordinate of cable 
/Ij+1/2 Linear density of segment of cable between stations j and j + 1 
p Density of fluid medium 
gj+1/2 Cross-section area of segment of cable between stations j and j + 1 

Dot signifies differentiation with respect to time. 

3. Sample Calculation. A typical calculation was carried out to determine the 
forces acting on a mooring line, anchored at one end and fastened at the other end 
to a ship which is in motion in conformity with the wave pattern of the sea. The 
mooring line was composed of two sections with different elastic and inertial proper- 
ties and with a heavy weight attached at a position ninety feet from the anchor. 
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FIG. 1.-Maximum tension in elastic and inelastic motion of a submerged cable. 

The motion of the ship was assumed to have an amplitude of six feet and a period of 
ten seconds. Figure 1 shows the maximum tension in the cable (which occurred at 
the anchor) plotted as a function of time. Also plotted on the same graph is the 
maximum tension attained as a result of calculation based on the assumption that 
the cable is inextensible. It will be noted that the tension is considerably lower 
when the elastic properties of the cable are taken into consideration. 

The calculations were carried out by the method of finite differences in which 
the time derivatives were replaced by equivalent difference expressions. An appro- 
priate integration interval was chosen to insure stability of the calculation. Prior to 
the start of calculations the equilibrium conditions of the immersed cable were 
computed and used as initial conditions in the calculation of the transient motion. 
The free end of the cable was assumed to start from rest and gradually approach a 
trochoidal wave motion in accordance with the following set of equations: 

x(0t) = Xs0 + [1 - (1 + vst)e-st][a, cos ,st + bk sin cw,8t] 

(3) Ys(t) = Ys0 + [1 - (1 + v~t)e-^8t][c, cos cot + d8 sin cjt] 

where vs, W., a8, b., cs) d8 are chosen parameters. An IBM 704 calculator was 
used to carry out the computation. The computer time required was considerable, 
primarily as a result of the very small time interval which was necessary to insure 
stability. 

In addition to the plot of maximum tension shown in Figure 1, plots of the 
tension as a function of position along the cable were obtained at desired time 
increments. These have been obtained on a film which can be used to produce a 
"moving picture" of the- tension as it varies along the cable as a function of time. 
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