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for the Equation of Multidimensional Heat Flow 

By Jim Douglas, Jr., and James E. Gunn 

1. Introduction. Several high-order accuracy difference equations for the heat 
equation in one space variable [1] have been proposed, but most do not extend to 
several space variables with any ease, if at all. Two three-level difference equations 
are discussed here, each of which is fourth-order correct in space and second in 
time. One is stable and convergent in 22 for as many as four space variables but is 
limited essentially to the heat equation itself and in the four space variables case 
to bounded r = At( Ax) -2. The other is stable and convergent in 22 for three space 
variables and is adapted to extension to more complicated differential equations. 

Alternating direction techniques based on the two three-level formulas are 
developed. These methods retain the accuracy of the original procedures and re- 
quire much less arithmetic to complete a problem. Only the results will be given 
here; their analyses will be presented in another paper [3] as examples of a general 
approach to alternating direction methods. 

2. The Difference Equations. It is desired to approximate the N-dimensional 
equation of heat flow 

dv Na2 
(2.1) = AV = E 2 

with an implicit difference equation for which the local error is fourth order in the 
space increment and second order in the time increment. It is known [1] that three 
or more time levels must be used if the elliptic operator at the advanced time level 
is to retain a (2N + 1)-point form (if N > 1). The solution of the (2N + 1)-point 
elliptic equation is itself not simple; however, alternating direction methods may 
be employed to treat three-level problems of this form without arithmetic complica- 
tion. 

Let R be the cube 0 < xi <1, = 1, 2, , Nand dR its boundary. Let 
MI be a positive integer; we impose a square net of size h = M upon R. It is 
easily verified that, if v E C6, 

(2.2) av X, (v.+, + v. + v l.)- dxfl + O(h + K) 

where v, = V(X1 .*- XN , nK), K the time increment, and A\j is the centered, 
divided second difference. Thus, if 

N 

Ah = Z i 

no V - Vn-.1 h2 = h?- 2 

(2 3) = 3Ah(Vn+l + v. + v,,-,) - 12 Ad dV + O(h + K2). 2K +12 Ox- 1 
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If we can find a second-order difference approximation to the second term on the 
right in (2.3), we shall have produced a difference equation locally fourth-order 
correct in space and second in time. Consider 

2 N a4 N a4V 
(2.4) AV= E v+2 E E 8+2 = ZAVt = Vtt. 

Thus, two approaches suggest themselves; we can replace the sum of the fourth 
derivatives by either 

N a4 N N 

(2.5) a 
=Av4 - 2 '~i A2 A + O(h2 + K2) 

or 
N 

2K 
- 

NN /2 

h 

(2.6) E a4= Ah (-n 2 
V E + + h 2 

We therefore consider two difference analogues to (2.1): 

(2.7) U f = (U3?n+1 + Un + U?n+) - t U - 2 E E A2 A2 U) 

and 

U 2K = Ah ((1 8+)u? U+1 + U. + (1+ U)-u1) 
(2.8) 2 N N 

+h E E 'A2i 'Aj n2 6 i=1 j>i 

where 

(2.9) r = Kh2= constant. 

The choice of constant r is optimum from the point of view of requiring asymp- 
totically the least calculation for a given permissible error [5, Lemma 2], since the 
error is fourth order in space and second in time. Equation (2.7) is the N-dimen- 
sional analogue of equation (9.22) of [1]. 

As both (2.7) and (2.8) involve three time levels, it is necessary to specify 
both uo and u1 to start the calculation. The natural choice for uo is obviously vo 
the choice of u1 will be discussed later. 

The equation (2.8) may easily be extended to treat differential equations of 
the form 

(2.10) Av = a(x, ** XN, t) + b(xi, * XN, t)V + C(X1, XN, t), at 
since we need only to approximate the Laplacian of the right hand side [6]. 

3. Stability and Convergence for (2.7). We consider the difference equation 
(2.7) on R and compare its solution u with a C6 solution v of the boundary value 
problem for (2.1 ) on R with 

uo = vo at the net points of R 

(3.1) T 
Un= Vn, n = 0 12 - , at the net points of aR. 

K 
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If e = v -u, the error equation becomes 

en2K n = 1Ah (en+l + en + en-1) 

(3.2) 2 N N 

th (\en - /2t AxiA; en) + Qn 

where Qn = O(h4 + K2). Let us perform a Duhamel decomposition [1] on en. Let 

n-i 

(3.3) en = E en 
In 

+ en*, 
xn=O 

where enI and en* = 0 on OR 

a) enI = 0O n _ m 

ern+l AIn + 
b) 2K 3Ah em+1 12K 2 '41 + Qm n m + 1, 

C) en ~ h en-l - 'Ah(e ?l + enm + en-1) 2K " 

h (At2enm 2 2 , A2 2Aen )I nn m + 1 

and en* satisfies (3.4c) with eo* = 0, el* el, and m = 0. It is necessary to con- 
sider en* in a somewhat different fashion from the others; we shall see, however, 

that the method of analysis is the same. 

Let the grid 22 norm be 

(3.5) lu = (hN E l u 12)112 
xER 

and let the operator norm be the induced least upper bound norm. 

1THEOREM 1. The difference equation (2.7) is unconditionally stable with respect 

to the 22 norm for N < 4; its solution converges to that of (2.1) with an error I en II = 

O(h4 + K2) for N < 4, provided the solution of (2.1) is C6 and ul is approximated 

to within an error that is 0(h4 + K2). 

Proof. 

LEMMA 1. 

1 e,+1 = O(K 11 Qm 11) = O(h4K + K3) 

Proof. From (3.4 b), 

(3.6) 1 6K 3 ahm ei+i- 2KQmm 

Hence, 

(3.7) 11emn+l 11 < 2K 11 Qn 114 1 + 6h-2 A\h) 

As Ah is negative-definite, the indicated inversion is legitimate and 

(1 + 3 
- 3Ah) < 1. 
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LEMMA 2. Consider a solution of (2.7) with zo = 0, z1 arbitrary, and zn = 0 on 
aR for n = 02 1, 2, *.. . The norm of z is a bounded multiple of 11 zi 11 for all n, pro- 
vided that N _ 4; i.e., (2.7) is stable. 

Proof. Let p = (p1, ., PN), and set P = {p:pj = 1, , M - 1}. Then, 
we may expand zn in a sine series: 

N 

(3.8) = Z p p) rI sin wpjxj. 
PEP j=l 

Since 

Ax sin rpjxj = sin rPm2) sin rpj xj, 

(n1 n) N-;h 
(n1 1 4 (!si2 7ph(P(n2Th) + (n) + (n-1)) 

2K 3 4 \h2 2) (PP + P P 
2I(n?1 9() (n-1) N N 1 7ph 2P 

(3 9) -2 -ppn+1) _ 2pp7) + PP 2 -2 Z 
E sin2 sin P pp)) 

Let sin2 (ipjh) = X . Then, 

(n+1) (1+ 8 X + 1 ) + (n) (8rX 1 
~~k ~ ~3 j=1' '6r/ 3~ j=1 3 - 

16r N N n18 
N (3.10) 16r 

~~~E E Xi X ) + PP -1 (8 
1 Xj 1 + 1 ) 0. 

3Y i= ~ 3ji 

Hence, 
(3. 1 1 ) p~~~~(n) = tn + Bp np (3-11) =P ApfAp + 2 

where Pip and t2p are the roots of the quadratic equation 

( W 1 + 8r _E X 1 2 + (83r 

N 
X 1- E1r+ I~ 2+( E '~ - 

(3.12) 3 
6r 3 

) 36 
16r NN\ 8r N 1 

- __ Yi Xj +- E X'Y 1 + 0. 
3 i=1 j>i ',\3#Vj=1 '6r/ 0 

If the roots of (3.12) are coincident, 

(3.13) Pn = (Ap + Bpn)?1P . 

Let us ignore the possibility of coincident roots for the moment; we shall see that 
the analysis will include them as a special case. We note immediately from (3.12) 
that 

(r + 
1-j 

1 ' 
(3.14) I~lp 2pI 

3 
Xj 6r <1 

8r 1 
3 j 6r-+ 



EQUATION OF MULTIDIMENSIONAL HEAT FLOW 75 

all p, and that 
N 16r N N 

f (1) 8r Z Xpj - ZZE E Xpi oh, 
j=j 3 1=1 j i 

2 N16 N N 
f(- 1 ) = - +-3ZE XP, + ZZ X7, Xpj > 0, all p, 3r 3 j~ 3 t==1 j>i 

(3.15) N 

l 
rN N 

f'(1) = 2+8r Z Xpj- EE XPiXPj, 
j=1 3 1=1 i, 

SrNI 6 N N 

f'(-1) = -2- - X, - 16r Z X Xpj < 0, all p. 
3 j_ 2r 3 11_~ 

First, let us establish that the roots are not greater than one in magnitude. It is 
clear that if the roots are complex, the modulus of each is the same and is less than 
1; thus, we may limit our interest to real roots. In this case, f (1) and f' (1) must be 
nonnegative in order that the roots lie in the unit circle. This places a restriction 
on the number of space variables we can treat by this high-order correct equation 
and still maintain unconditional stability. The Xpi range from approximately 
h2/4 to very nearly one. Note that 

(3.16) ~~16r N N (N -i) 16rN (3.16) E E X<Xpj <p? x E 
3 i=1 j~i 2 3 1=1 

and that equality very nearly holds (i.e., to within 0(h2)) when the pj are all near 
the upper part of their range. If f(1) is to be nonnegative for all p, then 

(3.17) 16 (N - 1) <8 
3 2 < 

or N ? 4. This restriction also implies that f'(1) > 0. 
From (3.11), 

(3.18) pp ApPl + Bp . 

Consequently, 

PP 
(3.19) AP --BP. 

Alp -t;2p 

If (3.12) has coincident roots, the expression becomes 
(1) 

(3.20) Ap=0, Bp =PP. 
Al1p 

Thus, for distinct roots, 
n n N 

(3.21)~ ~ ~ ~ ~~()~ (3.21 ) En P1 P l 2 P II sin '7pj Xj 
peP -ip 2p j~ l 

Let x2 - 2fx + -y = 0 have distinct roots less than or equal to one in absolute 
value with their product less than one in absolute value. That this implies that 
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< 1 is clear. We shall show that, if x1, X2 are the roots, then 

(3.22) X^- 
_ X < 2 

X - x2 I1-J3 
Let us assume that A > 0 and the roots are real. In this case the root with maxi- 
mum absolute value is positive and lies between A and 1. We consider two ranges 
for this root: 3 < x1i < (1 +? ) and -(1 +? ) < x1 < 1. In the first range, 

(3.23) I ~n n n-1 00o 

(3.23) Ei -xni 22 
X1 - X2 k=Q X X1< 

If -(1 + A) < x1 < 1, then x2 < A- 0(1 -A), since xi and x2 are symmetric 
with respect to A, and (xi -X2) > 1-A. This implies that 

(3.24) Xi -X2h 
x l |+ I x21 < 2 

Clearly, A < 0 will produce analogous results. Consider now the case of complex 
roots with A > 0. Then, xi = A + Ei, e > 0. Again, consider two ranges for 

x1:: < Ixi I < I(1I + ) and (1? + ) < IxiI <1. 

In the first case, the argument is essentially unaltered, and we conclude again that 
(3.22) holds. If -(1 + A) < I xi < 1, then Xi - x2 = 2E, and 

(3,25) e+: > l3+Ei > +2 

Thus, 2E > 1 - A and (3.24) holds without change. If the roots are coincident 
the pertinent quantity is I no , which is also less than 2(1 - )- for all n. 

For the quadratic (3.12), the abscissa of the axis is 

8r N 1 16r N N 

--Expi+- + -EEXpiXpj 3 j-i 3r 3 i71ij>i (3.26) 16r N1 
(3.26) ~~~~~2 + E X:Pj + 3 

2 3 ZjP1 +3r 

It is easy to see that 

(3.27) 1 < < 64r + r1 - N < 4 
2 64r-h-r-1?+6 

Thus, 

(3.28) 11?Zn 1 max (4, " (64r + ri1 + 6))| zi!I 
- 32(64r + r 1 + 6)||z 11 = C 11 zi. 

It is easily verified that a somewhat stronger inequality holds if the roots are coin- 
cident; in any case, (3.28) is valid. This completes the proof of Lemma 2. 

The above lemma implies that 

(3.29) [?C ~In [ C (3.29) 11 ~~em"1 C || em+i || < 2Ck || Qmn1 

Also, 

(3.30) 1en* 11 < C 11 e1. 
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Thus, 
n-i 

||en 11 < NLn'X + TS en 
' 

A 
m=7Q 

(3.31) < C 2K E Qv 1 + 11 e l] 

= O(h4?K2 + K l el H) 

Therefore, if el = O(h4 + K2), then i en 11 o(h4 + K2), and the theorem is 
demonstrated. 

If N < 3 (i.e., if the problem arises from physics), then A is bounded away 
from one if we assume merely that r is bounded away from zero. Then, the bound 
C is independent of the choice of r; however, as remarked earlier, constant r is 
still the optimum choice. 

In order to start the method with u1 such that 11 = O(h4 + K2), essentially 
any of the standard difference equations is sufficient. In particular, the explicit 
equation 

(3.32) t0 = Uo + AtAhUO 

is adequate. 

4. Stability and Convergence for (2.8). Most of the development for this dif- 
ference equation closely parallels that for (2.7). The argument will be given in 
outline. The error equation is 

-e.-i = Ah I 
er)n+l+ en+ Q +-) en1) 

(4.1)2 N N 

+ - Z Z Avxi AX, en + QnX 

where Qn =O(h4 + K2 + h6K-1). It has the Duhamel decomposition 
n-i 

(4.2) en -E en + en 

a) en i=O, n < m, 

e_ _ 1 (I1 b) CM =i Ah ii--) e+i + Qmm n= m +1 2K 3 8r, 

(4.3) cIn 1 X 8/k -,ei, en+l- en -1 I It I mn1 c) - Ah ae8Jen+, + en + + +8Jen-1y 2K 3 8 

h2 N N 

+6 E/vx~Xj enm n > m + 

with the same boundary and initial conditions as before. 
THEOREM 2. The difference equation (2.8) is 22-stable for N < 3 and convergent 

with an error that is O(h4 + K2), provided that the solution of (2.1) is C6, that ul is 
estimated with error that is O(h4 + K2 + h6Ki'), and that r is bounded below away 
from zero. 
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Proof. Lemma 1 carries over in the form 

(4.4) 11 e +1 11 _ max (2K, (4r)-1K)j1 Qn 1 
The characteristic equation corresponding to (3.12) is 

f = I[ + 
8 

-I E XPj- 

+ 8r i p p 
mLrf 16 [ 3 8r) 1 Pi ] 

It is easily verified that 1 2 1 < 1 and f(1),f(-1),f'( 1) are positive and f'(-1) 
is negative for N _< 3. Thus, the roots are less than one in absolute value; the 
abscissa of the axis of the parabola (4.5) is 

N N N 

-8r aj XPj + 16r a, Z Xp, Xi, 
(4.6) A =j =1 > 

6 + r(1 -I EXpj 

If N < 3, A is bounded between and + 2, so we may proceed exactly as before 
and find that, for r bounded away from zero, 

r nn- 1 
(4.7) en 11 < 4 [H el + CK , 1| Qrn HJ O(h4 + K 2 + h6.K-) = O(h4+ K2). M=o 

5. Alternating Direction Techniques Associated with (2.7) and (2.8). The 
authors in a forthcoming paper [3] discuss the application of alternating direction 
methods to three-level difference equations; the technique may be summarized 
briefly as follows. First, write the basic difference equation (in this case, either 
(2.7) or (2.8)) in the form 

(5.1) (I + A)un+1 + Bun + CuWl = 0. 

Decompose A into a sum of simpler operators: 
N 

(5.2) A = E Ay; 
3nd 

N is frequently, but not necessarily, the dimensionality of the x-space. It is neces- 
sary that the operator I + A j be invertible. Then, the alternating direction systems 
become 

(I + A) wn + ( A + B) wn + CWn-l = 0, 

(I + Aj) w(N+l)-wn+1 AjWn= O. j = * * N. 

Wn+l = Wn+l 
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If equation (2.7) for three space variables is rearranged in the form (5.1), 

2K 1 
A= - 3 Ah+ - I, 3 

6r~~~2 
(5.4) B = - 2K Ah - Kh E E -A2 '2 

3 3r 3 1=1ji x 

C- - 2K Ah- I - 
I 

1. 

One choice for the decomposition of A is 

2K 2 1 
Al = --3 A, + r 

(5.5) A2= - 3 Ax2 

2K 2 
A3=- 3 Ax3 

It follows from the general results of [3] and a simple calculation for $ that 

(5.6) 1 w - v 11 = O(h + K 2) 

for r bounded away from zero. Note that the algebraic equations to be solved at 
each time step become tridiagonal with the choice (5.5), and, consequently, much 
less arithmetic is required to evaluate this solution than that of (2.7). As no reduc- 
tion in the order of the accuracy occurs, the alternating direction analogue possesses 
a large practical advantage. 

For equation (2.8), again for the three space variable case, 

A- - 2K (I -8I h 

2K Kh2 2 

(5.7) B _ 2K Ah + K E E A2 A2j, 3 3 =1 j>i 

C - =--- I + Ah - I. 

Let 

A 3= _ 2 (1-8r )xi v~z i-1, 2, 3. 

Again (5.6) follows for r ? 81. 
Both procedures are considered in more detail in [3]. 

6. Remarks. As was noted in Section 2, the difference equation (2.8) can be 
modified to treat significantly more complex problems than the heat equation; 
the general linear self-adjoint differential equation 

(6.1) V (pVv) = q- +rv+rn a t 
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can be brought into the form (2.9) by a well-known transformation. The technique 
of treating problems of the type (2.10) is discussed in [6] for one space variable. 
It is noteworthy that the method of analysis we have used here does not extend 
either to variable coefficients or to regions more general than a rectangle, the latter 
because of the noncommutativity of 4j and A2 on any but rectangular regions. 
It is pointed out in [6] that the energy methods used there for problems with vari- 
able coefficients on general regions apparently are not sufficiently refined to treat 
the high-order correct schemes discussed here for more than one space variable. 
The need for a better method of analysis is thus clearly indicated; an analytical 
method capable of treating the high-order correct analogue of (2.7) would also 
have important bearing on alternating direction methods [3, 4, 5] for problems of 
the same type, since the residual terms are quite similar. 
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