
The Calculation of Certain Dirichlet Series 

By Daniel Shanks and John W. Wrench, Jr. 

1. Introduction. We will be interested here in the computation of a class of 
Dirichlet series known as La(s). They will be defined presently, and include such 
examples as 

(1n 7n 1 1 13n 17n 1+ n 23n 

and 

(2) L-2(n)=1 -- -+-+ - - 1+13n + 15+ 3n 5n 7n 9n 1n 3 15 

These, and some closely related series, arise in several number-theoretic investiga- 
tions, including the distribution of primes into arithmetic progressions, the class 
number of binary quadratic forms, and the distribution of Legendre and Jacobi 
symbols. Our own immediate interest in them stems from their utility in the calcu- 
tion of certain other number-theoretic constants. These latter include the ha of 
references [1] and [2], the si of reference [3], the constant 0.48762 of reference [4], 
and the constant 'C of reference [5]. The last of these illustrates our point, for when 
it was first presented by Bateman and Stemmler [6], it was given as 0.76; subse- 
quently, in [5], the improved value 0.761 was presented; but with the aid of a short 
table of L3 (s), and utilizing a formula analogous to that in [1, eq. (18), p. 323], it is 
fairly easy to compute 

(3) 1C= 0.7608578. 

Similarly, while Ramanujan [I 1] gave a certain constant as 0.764 * , and G. Pall 
[12] gave another as 0.64 *.. , with the aid of short tables of Li(s) and L3(s), one 
may [13], by a trivial computation, obtain 

b= 0.764223654 

and 

3 = 0.638909405. 

It may be argued that such precision as in (3) is not needed in these investiga- 
tions. While that is irrelevant for our present paper, it is not inappropriate to men- 
tion briefly some counterarguments. Consider, for example, P2(N), the number of 
primes of the form n2 + 2 for 1 < n < N. The Hardy-Littlewood conjecture [1] 
claims that 

(4) P2(N) 0.356531V55 li(N), 

where 11(N) is the logarithmic integral. While an examination of the evidence 
makes it almost certain that P2(N) is of the order of li(N), the heuristic argument 
in favor of (4) is not that convincing that one would be greatly astonished if the 
true coefficient were found to differ slightly from that conjectured. For empirical 
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tests, therefore, fairly accurate coefficients are highly desirable. Secondly, one might 
(more ambitiously) attempt to investigate the second term, S(N), in the presumed 
asymptotic series, 

P2(N) - 0.35653155 li(N) + S(N), 

but to do this an accurate subtraction of the leading term is absolutely essential. 
Such a second-term investigation arises from an assertion of Ramanujan concerning 
a certain B(x). In effect, he states that 

b Wx 1 1 ___ 

B = 10 + 2 logx 2log, x 

But G. H. Hardy [11, p. 63], and Miss Stanley [14], disagree with the second term 
here, and go as far as to state (erroneously, [15]) that Ramanujan's approximation 
is no better than that of the leading term. Finally, consider a question such as this: 
Are there more primes (asymptotically speaking) of the form n2 + 2 or of the form 
n2 + 6? The Hardy-Littlewood conjecture [2] gives 

P2(N) -- 1.0000301, 
P6(N) 

but it is clear that this Xvery slight excess of the first type could not have been found 
unless the pertinent constants were available to at least 5 or 6 decimals. 

Let n be an odd integer, a an arbitrary integer, and (a/n) the Jacobi symbol. 
That is, if n is a product of odd primes, n -= p,, then (a/n) = ll(a/p1), where 
(a/pi) is the Legendre symbol. If a is not prime to n, (a/n) = 0. 

Now, for every a, we define [1, p. 323] 

(5) oddL( n ) n 
n>O 

The values of (-a/n) are periodic in n and always either + 1, -1, or 0. As examples 
we list the complete periods of these coefficients of n 8 (odd n) for twelve of our 
series. 

L1(s): +- 

L2(s): + +-- 

L3(s): + 0- 

(6) L5(s): ++ 0 ++--0-- 

L6(s): + ? ++ +-0--0- 

L7(s): +--0 +-. 

L-1(s): + 

L_2(s): +---+ 

L-3(s): +0--0+ 

(7) L-5(s): +-0-+ 

L_6(s): + ? +- --0-+ 0 + 

L_7(s): ++-0+----+0-+?. 
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The reader may easily verify that L?4(s) - L?i(s), and that L?8(s) = L?,(s), 
but that 

Lig(s) - (1i t8 i~) 

so that, for instance, 

L4(s) +- 

L8(s): + +-- 

L9(s): + O +-O-. 

While La(s) is an analytic function of the complex variable s that may be ex- 
tended to the entire complex plane, our interest in it here will be confined to integral 
values of s. 

Now Li(s) and L-1(s) have been tabulated and are well-known under the more 
common names: Li(s) = L(s) and L-1(s) = (1 - 2-s)v(s). They need no further 
treatment here. Some of the other La(s) have also been (partially) investigated 
long ago. Thus [7], [8] Glaisher's hn is our L3(n), his qn is our L-2(n), his pn is our 
L2(n), and his tn is our L-3(n). But this unsystematic notation of Glaisher is in- 
adequate here, since we have defined La(s) for infinitely many a. Further, it is 
clearly desirable for the notation to simply and unequivocally define the series in 
question. This is accomplished by the notation La(s), as we have seen. (We may 
similarly criticize, at least for some purposes, the common notation L(s, x). Unless 
x, the particular character in question is fully defined, this notation is certainly 
ambiguous.) 

Some of the La(s) may be expressed in closed form. Thus, Glaisher gives 

1 V r2n+1 Hn 

An3= 3 ()n (2n)!' 

where the coefficient H, is generated by 

3 cos (2 t) - Hn t2n 
2cos (2t) n=O (2n) ! 

Likewise, he gives 

q4/ (2n - 1)! 

where 

sin t Q t2n-1 

cos (2t) n=1 (2n- 1)! 

Here again, these individualized formulas and generating functions do not suffice 
for our more general needs. 

We give below a brief presentation of the general theory of those La(s) that may 
be expressed in closed form when s is an integer. This is a generalization and adapta- 
tion of the presentation given by Landau [9] for the evaluation of his K(d). 
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As it develops, our treatment is somewhat simpler than Glaisher's, even for 
those examples that he did give. Thus [7, p. 64] Glaisher gives a two-term formula: 

122nl17r2nl 1 i 
q2n = A\/2 (---) 2A2n - A2n (2n-1)! \8 22n \4/ 

while we obtain a one-term formula: 

L2() = 2 ( 

Similarly, in [8, p. 102], we see a four-term formula: 

N/6 1 +~1 1 1 
V/ (1 ?452r 72r I i2r -132r 172r ? 192r ? 232r + ) 

- (-1)r-1{ b2 +2r (57r -b2r (7) -b2r ( 1 r)} 

while we obtain the two-term formula: 

L-6(S) { 1)C' ?C -)f . A/ 24) (24) 

This relative simplicity stems from our use of C (x), since, as we shall see, the 
series for this function, unlike those for the A2n(x) and b2r(x) above, involves only 
the powers of the successive odd integers. 

In Sections 2 and 3 we give three tables of closed-form expressions for all the 
La(s) that may be so expressed, with a range in s from 1 to 10, and for values of 
a = +2, +3, +5, +6, +7, 4-10, +11, +13, +14, and +15. In Section 4 we 
present the theory of La(s) for integral values of s < 1. 

In Section 5 we shall discuss computational techniques for evaluating those 
La(s) not obtainable in closed form, as, for example, L3(2m). In that section we 
give twelve tables of La(s) to 30D. Here s = 1 (1) 10, and a = 41, +2, ?3, +6, 
i9, and +18. The first two tables are well-known, but are reproduced here for the 
reader's convenience. The last four are rational multiples of the first four, namely, 

L?9(s) = ( i Li(s), 

and 

L?18(s) = (1 
I 

L?2(s) 

Taken together we have all four characters [9, p. 109] modulo 8: 

L1l(s): ++++ 

L1(s): +-+- 

L2(S): +--+ 

L2(s): + + - ; 
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all four characters modulo 12: 
L-9(s): + O ++ O + 

L9(s): + O +-O- 
L-3(s): + O--O + 
L3(s): + O-+ O-; 

and all eight characters modulo 24: 

L-9(s): + O ++ O++ O++ O + 
L9(s): + O +-O-+ O +-O- 
L-18(s): + O-+ O--O +-O + 
L18(s): + O--O +-O ++ O- 
L-6(s): +0+-O--O-+O+ 

L6(s): +0++0+-O--O- 

L-3(s): +O--O++O--O+ 

L3(s): + O-+ O-+ O-+ O-. 

It follows that the reader may readily compute the following arithmetical-pro- 
gression Dirichlet series by simple linear combinations: 

oo1 
00 

(8) k= (8k + 1)S = [L-1(s) + Li(s) + -L2(s) + L2(S)], 

(8) kO (8k + 3)- 4[L-A(s) - Li(s) - L2(s) + L2(s)], 

k=O (8k + 5)s 4[L( -(s) + L2s)) -L2(s)]- Z = ~~~[L-i(s) - Li (s) + L-2(S) - L2(s)]. 

kc=O (8/c ? 7)8 

Similarly, one may obtain 
00 00 

_ 1or _ 

O (12k + b).s r k==O (24k + b)s 
for b prime to 12 or 24, respectively, since, by weighting the character series by the 
coefficient that appears in the cth column in the foregoing arrays, one obtains, as 
the sum, 4, or 8, times the corresponding arithmetical-progression series for 
b = 2c - 1. 

It was, of course, just such linear combinations, and their utility for his irtvesti- 
gation of primes in arithmetical progressions, that led Dirichlet to invent these 
series. 

As for 

o=O (mk + b)s 

for m = 8, 12, or 24 and b not prime to m, those are also obtainable, with slightly 
more arithmetic. For example, 

ko (8k + 2)6 28+1 - 

2. The Theory of the Closed Form Evaluations. The principles behind the closed- 
form evaluations are first, the trigonometric evaluation of the Jacobi symbol, and 
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second, the subsequent evaluation of the derived Fourier series. Consider, for 
example: 

(_) ++ 0 +:+--0--, repeat. 

It is periodic, with a period of 20, and antisymmetric. It is therefore expressible as 
a (finite) Fourier sine series. In fact, if one evaluates 

sill (2k + 1) + sin [(2k + 1) 3] 

for k - 0, 1, 2, , one obtains the repeating sequence: 

+A, +A, 0, +A, +A, -A, -A, 0, -A, -A, repeat, 

where A is equal to V/5. The needed generalization for any (a/n) is obtained by 
the use of Gauss Sums. 

Let d be an integer satisfying the two conditions [9, p. 219]: 

(a) d 1 (mod 4) or d-8 or 12 (mod 16); 

(b) p2 t d for any odd prime p. 

Some of the admissible values of d are -24, -20, -8, -7, -4, -3, 5, 8, 12, 24, 
28. For any admissible d define the Kronecker symbol (d/n) for n = 1, 2, 3, -., 
as follows [9, p. 70-72]. If n is odd, (d/n) is the Jacobi symbol; if n and d are both 
even, (d/n) = 0; and if n is even, d odd, then (d/n) equals the Jacobi symbol 
(n/J d 1). 

For any admissible d we now have an identity [9, p. 221] that generalizes the 
Gauss Sum, namely 

(10?) (n) I (d ) 2rinr/ Id I 

Inserting the appropriate Jacobi symbols on the right, the Kronecker symbol on the 
left is given as a linear combination of complex exponential, that is, as a linear 
combination of sines or cosines. Using the abbreviations 

(11) s8(x) = sin(2irnx), cn(x) = cos(2irnx), 

the reader may verify the following evaluations of (d/n) for the 11 values of d 
mentioned above. 

(p4) = snc1) 

(-~) = A/X2 [n Q8) + Sn()] 

(12) -(p3) = 
\ / (3 ) 

(-20) [1 ) + + ((n) j [ ) + (0 + Sn (20) + (20)] 

-I =A- Sn (2)+ Sn (24 + S. 24 + Sn (4 

{-70 2 r 20 /30 
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(n) = j+/2 [ 8 (8) 

( 
/ 
12) ( 12) 

(-) = -Cn 

(13) 
-/ 

(n ) B/6 [ ?24 (24) (24) (24) 

(n ) 28) (28) (28 

+ Cn (9) Cn (28) -n e 

For our La(s) we are only interested in the Jacobi symbol, that is, in such formulas 
for odd n. But for odd n we have two simplifications. 

(a) On the right, since 

Cn(4 ) = 0, 

we have 

( 14) Sn(Q + Y) = Sn(j - y) 

Cn(I + Y) = -Cn(4 Y) 

and some terms may therefore be combined. 
(b) On the left, if n is odd, 

(15) (k) = 

Making these simplifications, we thus evaluate the following Jacobi symbols: 

(-1) = Sn (4) 

(-2) 2 _ 1 

(16) (3 1 

(p-) = j[sn (j) + sn (;)] 

( n) A 2[(2) ? (2)] 

(-7) = < [En (7) + Sn (7- Sn (4)] 
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(3) 2 (8) 

(3) = Cn 12 

(17) (n) Cn [ n 

(n) [c:24) (24)] 

)n +/ [C2) n (2) Cn(2-8]. 

Substitution of these evaluations in (5) converts our Dirichlet series into Fourier 
series. (It is, of course, not merely a coincidence that the first rigorous work on the 
latter was done by Dirichlet.) We abbreviate 

88x)= sin 27r(2k + 1)x 
(18) k=O (2k + 1)s 

C8(x) _ZE cos 27r(2k + 1)x 
k==O (2k + 1)8 

and obtain 

Li(s) = Ss 

L2(8) = 28S' 

L3 (s) = 2 S(1) 
-V 3 (3) 

L6(s) = 2 
[S.(S ) + SS (2)] 

(19) L7(s) = >iiSS(-7) + SS(7-) - S() 

L2(s) = 2 (1) 

14s(s) = 5 [c. (5-) - (8 (s)] 

L6(8) = 2 [C (24) + Cs(24)] 

V L7 7 7 \22/ 
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The Fourier series S2ml(x) and C2m(x) may, in turn, be evaluated in closed 
form for m = 1, 2, 3, 

Thus, 

Si(x) = 
1 

7r 

C2 (x) = 2 T(1 ) 

S3(x) = 7r3(1 X X2) 

C4(X) = 7r4( - X2+ X3) 

_ _ 1 4 

S7(X) - 7r (1 X -X3 + X4) 

6 
__ _ 41 14157 

C6(x) _ T _ X2 + _ X4- 5 

2105102 320 x 96 X 6 105 

7 __ 1 3 1 6 

S9(x) = 19( 7 x !- 6X3 +? X X ? 

C1x lo 317 17 2 1 4 1 6 1 7_ J 

These formulas may be verified by the relations 

S8(x) = -2 d C 

(21 ) 

C8(x) = 2 d + look 

and 

C2 1(501 ) = F6 ( 2 ) 

The latter relation fixes the constant term in C28(x). We may note that C2n(0) = 

L-1(2n). The formulas may clearly be extended to larger indices by integration. 
One may therefore obtain, in closed form, La2f 1 ) for positive a and L-a(2n) 

for positive a. Let us define Ca n and Dawn for positive a by the equations 

La(29 ? 1) (= 1 V / Ca n 

(22) /2n 

Lo(2n) = (-) V/ +Da n 
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We will give presently tables of such Can and Dan up to n = 4 and 5, respectively. 
To generalize the results of (19), we proceed as follows. Let a = N2b, where b is 

not divisible by a square > 1. Henceforth, the letter b here refers to such a number. 
Then it is readily seen that 

(23) La (s) = H -L_ 

(23) ~~~~~Pi [ (pi )pis] 

the product on the right being taken over each odd prime pi that divides N. Now if 

-b 1 (mod 4) 

we evaluate the Kronecker symbol (-b/n) by (10), while if 

-b 2, 3 (mod 4), 

we evaluate (-4b/n) by (10). The corresponding Jacobi symbol (-b/n) is now 
inserted into Lb (s) as before. We must distinguish four cases in our final result. 

I. For b > 0, b 3 (mod 4): 

(24) Lb(s) S 2 ((Lb) (k/b). 

II. For b < 0, -b 1 (mod 4): 

(25) ~~~~~~~~2 (-b-1) 
/2( (25) Lb(s) = 2 C, (k/ -b). 

N/ -b k=1 - b 

III. For b > 0, b 3 3 (mod 4): 

(26) Lb(s) = -) S8(k/4b). 
N/bodd k<b k 

IV. For b < 0,-b 4 1 (mod 4): 

(27) Lb(s) =--- 2 (-) C8(k/-4b). 
s/-b odd k<-b k 

Using these and (20) and (22), we thus compute Tables 1 and 2. 

3. Another Class of Closed Forms. There is another class of closed form evalua- 
tions, L-b(l) for b > 0. This is well known. We use the Fourier series 

(28) C1(x) = 2 log cot 7rx, 

and from (25) and (27) we thus obtain for 

b>0, b =1(mod4) 

(29) 1 (b-1) /2 k 

L-b(1) = log H {cot (7rk/b)} (ib 
Alb k=1 

and for 

b > 0, b 3 1 (mod 4) 

(3Lb ( 1) 1 --log I {cot (rk/4b) }(k) 
AVb odd k<b 
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TABLE 1. Values of Can 

n 
a 

0 1 2 3 4 

2 1 3 19 307 83579 
2 16 256 10240 6881280 

3 1 1 11 301 15371 
2 2 24 720 40320 

5 1 15 587 11851 100822507 
8 128 1024 3440640 

23 3985 1743623 284922989 
6 1 8 384 46080 2064384 

1 62 9271 644663 
2 3 90 1260 

10 1 79 39491 48224239 109493813441 
8 384 46080 10321920 

11 3 27 1275 155703 21370725 
2 2 8 80 896 

13 1 151 128657 265394311 1018375291937 13 1 8 384 46080 10321920 

14 2 99 30195 23890611 19125117629 
4 64 2560 1032192 

15 1 28 1922 1314577 59937599 15 1 28 
~~~~~390 180 

For large values of b these formulas are not well adapted for easy and accurate 
computation. To supplement them, we now could follow the K(d) theory in Landau 
[9], but the earlier pre-Kronecker theory of Gauss and Dirichlet is more direct for 
our purpose. (We register, in this connection, an objection to the frequent remark 
that Gauss was not wise in his choice of 

f = Ax2 + 2Bxy + Cy2 

(31) and D = B2 - AC 

as the basis for his theory of binary quadratic forms, since for some purposes, such 
as our present one, and likewise for investigations in the distribution of Jacobi 
symbols, the Gauss theory is really simpler and more direct.) An exposition of this 
earlier theory in English was given by Mathews [10, Chapter VIII]. 

In [10, p. 238] we have directly 

(32) Lb(1) = H(b) log (T + U+\b) 
2-Vb- 
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TABLE 2. Values of De ,n 

n 
a 

1 2 3 4 5 

2 1 11 361 24611 2873041 
4 96 7680 1290240 371589120 

1 23 1681 257543 67637281 
2 48 3840 645120 185794560 

17 871 92777 16922791 
5o 1 6 120 5040 362880 

6 3 87 25361 15540167 1813875289 
2 16 1280 215040 6881280 

7 2 159 44461 37040933 52955730841 
16 960 161280 46448640 

7 1577 1264807 307191791 6273958190407 
10 

2 48 3840 92160 1857945 60 

7 2153 2130727 627658799 15515203176007 
2 48 3840 92160 185794560 

493 33463 120190933 29632170055 
13 5 6 24 5040 72576 

2503 802729 13406231743 15337101636817 
14 5 

24 384 322560 18579456 

537 978941 3749253437 2735126857009 
15 6 4 320 53760 1720320 

where T + U+\b is the smallest number > 1 such that 

(33) T-2- bU2 = 1, 

and H(b) is the number of classes of properly primitive forms (31) for which 
D -b. Mathews also gives formulas similar to our (29) and (30), but slightly more 
complicated [10, p. 251-252]. 

The T and U of (33) are easily computed, and if one can obtain the integer H(b), 
(32) would suffice. But if H(b) is not available, one can proceed by the following 
combined operation. Estimate the logarithm on the right side of (29) or (30) with 
sufficient accuracy to identify the integer H(b) by 

(34) H(b) = 2 logarithm in (29) or (30) 
log (T + U-\I-b) 

Then compute Lrb(l) accurately by (32). In Table 3, equation (32) is written as 

(35) L-b(l) - log (t + u/b)6 
-\Ab 
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TABLE 3 

b t + u +\b b t + u \/b 

2 1 + V/2- 10 19 + 6\/10 
3 2 + V/3 11 10 + 3V/11 
5 2 + V/5_ 13 18 + 5\/13 
6 5+2\/6 14 15+4X/14 
7 8 + 3V/7 15 31 + 8A/15 

where 

(36) t + u/b = (T + U\/b)H'b)2 

If H(b) is odd, say for b = 2, 5, then 
2 2 t - bu = -1; 

otherwise 

t2 bt = 1. 

One can, of course, compute t + u-\/b by (29) or (30). An interesting and useful 
transformation of (29) is given when b > 0, b 1 (mod 4) by 

(29a) t + u\/6 = -F(b1)/2 {1 + (k) cos 27rk} 

Here p(b) is Euler's function, and F(b) = -\Ib or 1, according as b is prime or not. 
Similarly, when b > 0, b 6 1 (mod 4), 

(30a) t + u-\/b = 2 17 (1 + (b) cos't} 
odd k<b k 

--- 
2bJ 

For example, for b = 15, 

31 + 8V/15 = 16 (1 + cos 6?)(1 + cos 42?)(1 + cos 66?)(1 - cos 780). 

4. Nonpositive Arguments. To compute La(s) for s an integer <1 we need an 
analytic continuation of the series in (5). In [16] Landau gives, in effect, a functional 
equation for certain Dirichlet series L(s, x). If x is a real, "eigenlichter" character 
modulo k > 2, we have 

(37) L(1 - s, x) = L(s x)(k) (_r )a 

where a = 0 if x(-1) = 1 and a = 1 is x(-1) -1. In the first case we there- 
fore have 

(38) L( -s, x) = L(s, x) r () ( cos 78 
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and in the second, 

(39) L(1 - s, x) = L(s, x) 2 F(s) 08 sin 

For the Lb(s) in our Case III, given by equation (26), equation (39) is valid 
with k = 4b; and in our Case IV, given by equation (27), equation (38) is valid 
with k = -4b. For our Cases I and II we must make our Lb(s) depend upon appro- 
priate related functions. In Case I, b = 4m + 3, since 

Lb(s) = , (4mi3);1 
odd n n ns 
n >0 

odd 7(4m + 3) 
n>0 

we utilize 

(40) Lb(s) = -(4m + 3) 28] -i (4m ) 7 

For example, 

L3(s) = + 

and 

L7(s) = 

In (40), the sum on the right, call it lb(S), satisfies (39) with k = b. Similarly, in 
Case II,b= -(4m + 1), 

(41) Lb(s) = [1I ( 2 )1] E( ) 

and now lb(S) satisfies (38) with k = -b. 
Thus, it follows that 

Lb(O) 0 

in Cases II and IV, and also in Case I if b = 8m + 7. More generally, 
Lb(-2n) = 0 (n > 0) 

in Cases II and IV. Likewise, 

Lb( -2n) = 0 (n > 1) 
in Cases I and III. 

For the remaining nonpositive arguments, we utilize (22) and the foregoing, 
and obtain 

Case I 

2 2 2- 22n+1 

(42) Lb(-2n) = (-1)n(2n) 2- 2 Cb,n - 

22n+1 - (_) 
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Case II 

2 (2j) 22n 

(43) Lb ( l - 2n) = (-l)8(2n - 1)! -b Dbn- 

22n 
2 (_) 

\-b/ 
Case III 

(44) Lb(- 2n) (-1)n (2n)! 2 2n'Cbhn 

Case IV 

(45) Lb(1 - 2n) = (-1)n(2n - 1)! 22nDsn 

Therefore, Lb(s) is rational for all integers s < 1. For example, in Case I, 
b = 3, we have L3(O) = ,L3(-1) = O, L3(-2) = 19, L3(-3) = O, L3(-4) - 

- etc 

5. Numerical Evaluation of the Dirichlet Series. In Tables 4-15 we present 
30D values of L?a(s) for a = 1, 2, 3, 6, 9, 18 and s = 1(1)10. The values of L?i(s) 
have been included for ease of reference; they have been abridged from 50D values 
given by Li6nard [17], who designated them as un and U., respectively. 

From these data the entries in Tables 12 and 13 were derived by use of the 
relation 

L?9(s) = (1 + 3-W)Lil(s), 

which we have already noted. 
Formulas (22) in conjunction with the appropriate coefficients presented in 

Tables 1 and 2 were used to evaluate La(2n + 1) and L-a(2n) to at least 35D 
when a = 2, 3, and 6. The requisite decimal approximations to powers of ir were 
obtained from a manuscript table [18] of the second author. 

Numerical values of L-a(1) were computed from equation (35) in conjunction 
with the corresponding entries in Table 3. 

Evaluation of La(2n) and L-a(2n + 1) was accomplished numerically by means 
of the following relations: 

00 (46) L2(s) + L32(s) + Li(s) + L-9(s) = 4 E (8k + 1)-S, 
k=O 

(47) L3(s) + L-63(s) + L(s) + L-9(s) = 4 E (12k ? 1 )-1, 

k=O 
(48) L6(s) + L_6(s) ? L18(s) ? L18s(s) = 4 Z ( -il)(12k ? 1)-S, 

k=O 

where L?18(s) = (1 RF 3 8)L?2(s), as noted previously. 
The right members of equations (46) and (47) were computed to 37D by means 

of the series 
00 

Z (nk + 1)> = 1 + (n + 1)< +(2n + 1) 
k=O 

(49) + ~~~~~~~~~E (-O" (+ S,+,n 
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TABLE 4. Values of L,(s) 

5 
1 0. 78539 81633 97448 30961 56608 45820 
2 0. 91596 55941 77219 01505 46035 14932 
3 0. 96894 61462 59369 38048 36348 45847 
4 0. 98894 45517 41105 33610 84226 33228 
5 0. 99615 78280 77088 06400 63193 68631 
6 0. 99868 52222 18438 13544 16007 87860 
7 0. 99955 45078 90539 90949 63465 49899 
8 0. 99984 99902 46829 65633 80670 59240 
9 0. 99994 96841 87220 08982 13588 73294 

10 0. 99998 31640 26196 87740 55407 29958 

TABLE 5. Values of L_,(s) 

s 
1 o 
2 1. 23370 05501 36169 82735 43113 74985 
3 1. 05179 97902 64644 99972 47708 91323 
4 1. 01467 80316 04192 05454 62534 65507 
5 1. 00452 37627 95139 61613 35103 15005 
6 1. 00144 70766 40942 12190 64785 87138 
7 1. 00047 15486 52376 55475 51116 31492 
8 1. 00015 51790 25296 11930 29872 49296 
9 1. 00005 13451 83843 77259 28179 00543 

10 1. 00001 70413 63044 82548 81839 02300 

TABLE 6. Values of L2(s) 

5 

1 1. 11072 0734.5 39591 56175 39702 47515 
2 1. 06473 41710 43503 37039 28274 51462 
3 1. 02772 25859 36858 56787 92566 18002 
4 1. 01050 89405 73942 75298 78982 07302 
5 1. 00375 56863 95655 01098 49997 54471 
6 1. 00130 14424 54434 07196 30063 55517 
7 1. 00044 34746 05655 00357 30275 05364 
8 1. 00014 97085 46475 12110 59948 71805 
9 1. 00005 02713 77482 72819 46630 55508 

10 1. 00001 68294 64626 37816 45673 18164 

TABLE 7. Values of L-2(s) 

S 

1 0. 62322 52401 40230 51339 40200 80251 
2 0. 87235 80249 54859 94176 96951 17021 
3 0. 95838 04545 63094 56205 16694 02862 
4 0. 98654 28606 93970 50390 15344 90617 
5 0. 99563 38563 12967 45634 22177 17128 
6 0. 99857 39719 53530 54767 02705 16107 
7 0. 99953 13156 79375 57755 04092 58244 
8 0. 99984 52154 79225 60046 28798 89477 
9 0. 99994 87096 11033 21295 58121 22854 

10 0. 99998 29662 95349 76661 52219 07503 
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TABLE 8. Values of L3(s) 
s 

1 0. 90689 96821 17108 92529 70391 28821 
2 0. 97662 80161 20607 87108 39842 87030 
3 0. 99452 67882 18839 83883 59401 56480 
4 0. 99877 72859 31944 00423 42612 85388 
5 0. 99973 56076 48751 73899 50286 94789 
6 0. 99994 41189 29516 44561 32463 64813 
7 0. 99998 83774 09405 78786 21913 68362 
8 0. 99999 76099 35612 82784 77901 86693 
9 0. 99999 95124 45469 96620 68244 94259 

10 0. 99999 99011 08484 72908 32293 15190 

TABLE 9. Values of L_3(S) 

s 

1 0. 76034 559963 00946 34753 10942 54880 
2 0. 94970 31262 94009 39526 34984 91746 
3 0. 99004 00194 38159 94979 18167 76863 
4 0. 99807 15998 37928 68732 97096 98120 
5 0. 99962 84925 65847 67855 07322 81954 
6 0. 99992 82178 25104 42180 14330 56231 
7 0. 99998 60498 13929 33627 63518 45913 
8 0. 99999 72722 38930 94714 67818 74964 
9 0. 99999 94637 26660 51276 78505 04087 

10 0. 99999 98941 05047 33421 17808 98652 

TABLE 10. Values of L6(s) 
s 
1 1. 28254 98301 61864 09554 40363 59671 
2 1. 05780 66132 11504 42946 64424 68367 
3 1. 01090 26642 80502 41641 16825 04567 
4 1. 00203 12462 48522 77528 41975 01406 
5 1. 00038 19292 73761 64901 00617 72957 
6 1. 00007 27944 52888 72917 79169 55577 
7 1. 00001 40460 50564 39796 11536 33400 
8 1. 00000 27369 27970 92548 78370 64745 
9 1. 00000 05370 99012 55183 59109 36865 

10 1. 00000 01059 70764 53154 51588 22095 

TABLE 11. Values of L-6(s) 
S 

1 0. 93588 13101 03570 11048 69091 59266 
2 1. 00731 22810 74837 31529 16284 36796 
3 1. 00394 16231 50056 32071 76855 49326 
4 1. 00108 13817 86318 35741 13239 97815 
5 1. 00025 15406 94224 67683 00119 47776 
6 1. 00005 47188 75849 30454 37286 31353 
7 1. 00001 15176 18270 80347 48646 27001 
8 1. 00000 23805 77479 83393 81482 96510 
9 1. 00000 04866 96165 39056 96890 88342 

10 1. 00000 00988 13760 96521 79921 82628 
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TABLE 12. Values of L9(s) 
s 
1 1. 04719 75511 96597 74615 42144 61093 
2 1. 01773 95490 85798 90561 62261 27703 
3 1. 00483 30405 65271 95013 11768 77175 
4 1. 00115 37437 37909 10569 00080 97836 
5 1. 00025 72430 07446 45110 09955 80025 
6 1. 00005 51607 94869 46347 37566 18845 
7 1. 00001 15515 61271 75216 18684 27608 
8 1. 00000 23831 73250 45037 19548 91440 
9 1. 00000 04868 94337 25794 05389 45380 

10 1. 00000 00988 28886 61299 59386 29004 

TABLE 13. Values of L-9(s) 
s 
1 0J 
2 1. 09662 27112 32150 95764 82767 77764 
3 1. 01284 42424 77065 55529 05201 17570 
4 1. 00215 11423 25127 95510 74108 30131 
5 1. 00038 99201 49892 12800 12736 47042 
6 1. 00007 33495 12490 89814 52900 01970 
7 1. 00001 40856 67167 42052 79716 62753 
8 1. 00000 27395 83286 47197 49422 88581 
9 1. 00000 05373 11812 89092 98298 99836 

10 1. 00000 01059 86639 41566 20143 11216 

TABLE 14. Values of L18(s) 
s 

1 0. 74048 04896 93061 04116 93134 98343 
2 0. 94643 03742 60891 88479 36244 01299 
3 0. 98965 87864 57715 65795 78026 69187 
4 0. 99803 35215 54511 36097 57019 33138 
5 0. 99962 50045 58635 85456 11931 71119 
6 0. 99992 79150 98529 49847 60886 51326 
7 0. 99998 60244 57229 92126 68669 98961 
8 0. 99999 72699 38252 82646 78138 02628 
9 0. 99999 94635 60006 86157 22886 88640 

10 0. 99999 98940 91809 48666 12706 56623 

TABLE 15. Values of L-18(s) 

s 

1 0. 83096 69868 53640 68452 53601 07001 
2 0. 96928 66943 94288 82418 85501 30024 
3 0. 99387 60269 54320 28657 21016 02968 
4 0. 99872 24021 84019 52246 82201 01612 
5 0. 99973 11149 80922 05492 79881 60408 
6 0. 99994 37579 23288 47709 09430 40820 
7 0. 99998 83487 45529 84164 62256 31933 
8 0. 99999 76076 77896 41674 09568 41145 
9 0. 99999 95122 68636 78117 26975 47440 

10 0. 99999 99010 94690 91294 73632 68439 
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where St" = P(t) - 1 - 2-t. Thus, the required values of St" were obtained 
from tables of P(t), or St , given by Lienard [17]. 

The right member of equation (48) was expeditiously evaluated by means of 
the relation 

00 00 00 

E (-1)k(12k + 1)>S = 2 E (24k + 1)-q - E (12k + 1)-3. 
k=O k=O k=O 

A partial check on the accuracy of these tables was made by use of the relations 
00 

(5t,0) L-2(s) + Lr1(s) - L2(s) - Li(s) = 4 E (8k - 1)- 
k=1 

(51) L-3(s) + L-9(s) - L3(S) - L9(s) = 4 E (12k -1) 
k=l 

L-3(s) + L-6(s) + L-9(s) + L18(s) - L3(s) - L6(s) - L9(s) - L18(s) 

(52) 0 

= 8 E (24k - 1) 
k=l 

These check relations are especially easy to apply because the right members 
involve the same individual terms (except for sign) as the right members of equa- 
tions (46) and (47) and the series , (24k + 1)78, when evaluated by equation 
(49). 

These check relations were satisfied to within a unit in the thirty-third decimal 
place when the corresponding data on the work sheets were successively substi- 
tuted therein. 
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