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1. Introduction. The problem of maximizing the function 

(1.1) F(x1, X2, ., XN) = g9(X1) + g2(X2) + ... + JN(XN) 

over the domain 

(1.2) X1 + X2 + + XN = X Xi _ O 

can be reduced via familiar dynamic programming techniques (see [1]) to that of 
determining the sequence of functions {fn(x)} generated by means of the recur- 
rence relation 

(1.3) fj~x) = gi x, 
fn+x() = max [gn+i(y) + fn(x - y)]. 

O<y x 

The problem can thus be solved numerically in a very simple fashion, regardless 
of the complexity of the functions gi(x). A number of important allocation processes 
can be resolved in this way. If we consider cases in which two distinct types of 
resources must be allocated, we face the problem of maximizing the function 

F ( X1 , X2 ,XN ; yl, 2, *, YN) 

( gl(xI , y) + g2(X2, Y2) + * + gN(XN, YN) 

over the domain 

X1 + X2 + + XN = X, Xi _ ?, 

()Y1+Y2 + + YN = Y, Y i >O. - 

Theoretically, there is no difficulty in applying the same techniques. 
The maximization problem can be reduced to the determination of the sequence 

{f.(x, y)} generated by means of the recurrence relation 

(1.6) fn+l(x, y) = max [gn-+i(w, r) + fn(x - w, y - r)]. 

In principle, this equation can be solved computationally using the same technique 
that applies so well to (1.3). In practice (see [1] for a discussion), questions of 
time and accuracy arise. There are a number of ways of circumventing these diffi- 
culties, among which the Lagrange multiplier plays a significant role. 

In this series of papers, we wish to present a number of applications of a new, 
simple and quite powerful method, that of polynomial approximation. We shall 
begin with a discussion of the allocation process posed in the foregoing paragraphs 
and continue, in subsequent papers, with a treatment of realistic trajectory and 
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guidance processes. In a separate series of papers we shall apply this fundamental 
attack upon dimensionality to the solution of a number of the equations of mathe- 
matical physics. 

XWe would like to express our appreciation to Oliver Gross for the analytic solu- 
tion of some test problems we used to check the accuracy of our techniques, and 
for his general interest in the program. 

2. Polynomial Approximation. In the systematic study of dynamic programming 
as a computational algorithm given in [1], a function f(x) is considered to be a table 
of values at an appropriate set of grid points: 

x f(x) 
0 fo 

(2.1) 2A f2 

KA fK. 

In this way, the function f(x) is stored in the computer. For functions of one vari- 
able with K = 100 or 1000, this is a reasonably convenient way to proceed. For 
functions of two variables, this procedure becomes a bit inconvenient since (K + 1) 
values for x combined with (K + 1) values for y yields a total set of (K + 1)2 

values. Consequently, when we encounter functions of three or more variables, 
we must balance accuracy against time and the limited storage of contemporary 
computers in our choice of K. 

The storage of functional values by means of a table of values is ideally suited 
to the treatment of problems involving functions of quite arbitrary form. It is, on 
the other hand, quite wasteful and inefficient if we are dealing with functions 
possessing a definite structure, which is to say, situations in which there is a high 
correlation between the values of f(rA) and f(sA). Since functions of this type 
occur in many important applications, and throughout mathematical physics, it is 
worthwhile to develop methods which take advantage of the "smoothness" of the 
function. 

One such method is polynomial approximation, or to be precise, generalized 
polynomial approximation. We represent the function in the form 

M 

(2.2) f (x) _E a~k-o(X), 
k=l 

where the pk(x) are known elementary functions such as xk, sin kx, Pk(x) (the 
Legendre polynomial of degree k) or Tk(x) (the Chebyshev polynomial of degree 
k), and then store the function for all values of interest by means of the set of M 
coefficients [al, a2, . , aM]. 

It is important to point out that (2.2) is particularly useful in automatically 
furnishing the interpolation values frequently needed in dynamic programming 
calculations. If one uses a table of values of the form shown in (2.1), interpolation 
is frequently a source of difficulty. 

To determine the coefficients a. it is convenient to make the fPk(X) an ortho- 
normal set. Then 

(2.3) a;- = f f(x) k(x) dX, 
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assuming for the purposes of convenience that 0 _ x ? 1. We can, of course, use a 
Chebyshev fit instead, and we will explore this in subsequent papers. A priori, we 
would suspect that it would be more efficient to use a mean-square fit (implied by 
(2.3)), and take M to be larger, than to go to the trouble of determining the ak 

to minimize the function 
M 

(2.4) max If(x) - E ak'pk(x) 1, 
o0x< X!! k=1 

which for a fixed Al may be expected to yield a more accurate approximation. 
Alternatively, one could use an approximation by polygonal functions [11. 

To evaluate the ak without requiring a knowledge of too many values of f(x), 
we use a quadrature technique 

R 

(2.5) ak Wif (Xi)<k(ti) 
i=~1 

where the weights wi and the quadrature points xi are chosen so that the equation 
1 R 

(2.6) f g(x) dx =E wqg(t) 

is exact for polynomials in x of degree (2R -1) or less. This requirement narrows 
us down to the Gauss quadrature technique [2]. If we use generalized polynomials 
(expressions such as (2.6)), we will obtain different weights and quadrature points. 

We may then store the function f(x) for 0 < x < 1 by storing the coefficients 
ak or the particular values f(.i) which enable us to compute the ak. 

3. Application to Dynamic Programming. Consider now the application of 
these ideas to the computational solution of the functional equations of dynamic 
programming. Suppose that we wish to compute the sequence {ff(x) } determined by 

(3.1) fN(x) = max [9N(Y) + fN-1(X - Y) I 

N > 2, given that f1(x) = gi(x). To avoid the tabulation of each of the functions 
fN(x) at the x-grid [0, A, , KA], where K may be a large number, we approxi- 
mate to each function fN(x) in the manner indicated above. Starting with f1(x), 
we store the values f1(xi), i = 1, 2, ... , R, needed to evaluate f1(x - y) in the 
formula determining f2 (x) 

(3.2) f2(x) max [92(x2) + fl(x -y)] 
sO y <x 

We then determine successively f2(x1), f2(x2), * , f2 (XR), a set of values which 
stores the function f2(x). This process is then repeated. 

Although the calculation of f,_1(x - y) using (2.2) is far more time-consuming 
than taking a value from storage, we expect to gain time over-all because of the 
fact that we are required to calculate only a few values, fn(xi), i = 1, 2, , R. 
at each stage. 

4. The Legendre Polynomials. Since in allocation processes we have a range 
[O xo] which stays constant as the process continues from stage to stage, we can 
normalize and consider the basic interval to be [0, 1]. Since the interval is finite 
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and we want, at the moment, a polynomial approximation, we shall employ Le- 
gendre polynomials. 

Let P (x) denote the standard Legendre polynomial, defined over [-I, 1], 
and let pk(x) be defined by the relation 

(4.1) pk(X) = (2k + 1)12Pk(2x - 1). 

The sequence {sk(x)} is then orthonormal over [0, 1], i.e., 

(4.2) f(ok(x)(t(x) dx = 6V . 

From the standard recurrence relations for Pk ( X), we obtain the relation 

0(X) = 1, 2(X) = 3 12(2x - 1), 

(4.3) _Oi+2)( 
(2i + 3+)1/2 _____2__-_ 2x- l W - - (i-- L(i + 1 )1(x-)~?() (2i - 

1)1/2 

This relation makes the evaluation of the sequence of values of sol(x) for any x a 
relatively simple matter. 

5. Examples. In order to experiment with this new approximating procedure, 
we devised a FORTRAN program for the IBM-7090 whereby at each stage, after 
obtaining the new coefficients ak (i), we computed fi(x) from (2.2) for a succession 
of as many values of x as desired, and printed the result after each computation. 
We used two modes of output, either a list of numerical values, [x, fi(x)], or a 
graphical plot (done directly by the 7090) of x versus fi(x). 

We experimented with several types of functions gi(x) for which the results 
could be derived from analytic considerations.* Using the known analytic results 
as a checkpoint, we varied the parameters R, Al, and the grid size H, in order to 
determine the degree of accuracy we might expect in general. We found remarkably 
good agreement to 2 or more significant figures with a relatively low order of ap- 
proximation, namely R 5, 31 = 6. This is encouraging from the point of view of 
extending the method in the experimental investigations of higher-dimensional 
allocation processes where, as pointed out above, time and storage aspects become 
significant. We also incorporated in our program restraints of the form 0 _ ai < 
xl _ b, _ x, since constraints of this nature often occur in applications. 

a. Time Estimates. Following are some estimates of the execution time re- 
quired on the 7090: 

1. Ten seconds for 4 stages, R = 5, 11 = 6 and a grid of 0.05 both for the search 
and output listing. 

2. Three minutes for a total of 4 cases of 10 stages each; R = 3, 11 = 4; R = 5, 
Al = 6; R = 7,311 = 8; R = 10, AI = 11. The grid in the search for the maximum 
is 0.01 and the output listing is given for every x along the grid. 

3. Three minutes for the total of 4 cases mentioned above, 10 stages per case 
and a grid of 0.01 for the search. The output is a graph where the independent 
variable x is listed at intervals of 0.025. 

* Oliver Gross was of considerable assistance to us in this respect. 



POLYNOMIAL APPROXIMATION: ALLOCATION PROCESSES 159 

b. Numerical Results. 1. gq(x) = i(x)"12. Using the Schwarz inequality, we 
readily obtain the values 

fN(X) = (f6 (N + 1)(2N + 1)x) 

For R = 10,111 = 11, H = 0.01 we found poor agreement at the origin. This is 
to be expected because of the infinite slope at x = 0. Agreement between exact and 
computed values was good as soon as x moved away from the singular value 0, as 
can be seen from the following table: 

Function Exact Computed 

f(M) 0.0 0.064 
fl(2) 0.448 0.447 
fI() 1.00 1.00 
fio(0) 0.0 3.13 
fio(M) 19.6 19.6 

2. gq(x) = i(x + 0.1)1/2. We avoided the previous difficulty at x = 0 (,see the 
computed value of fio(O) above), but found the function still rather sensitive near 
the origin. As N (the number of stages) increased, the agreement at x = 0 de- 
creased. 

3. gq(x) = i(x + 1)1/2. The Schwarz inequality yields the upper bound 

fN(x) <;-(f (N + 1)(2N + 1)(x + N)). 

However, since the xi are subject to the restraint 0 _ x <_ x, we do not neces- 
sarily achieve the upper bound. Some exact values based on an analysis by 0. A. 
Gross are listed as check points, R = 10, M = 11, H = 0.01. 

Function Upper Exact Computed 
Bound Value Value 

fi(A) 1.00 1.00 1.00 
AM 11.41 1.41 1.41 
f3(0) 6.48 6.00 
f3(.5) 7.00 6.67 6.67 
f7(.35) 32.1 29.1 29.1 
fio(1) 59.3 59.3 

4. g (x) = e-51(1+10x)) R = 10, M-= 11, H = .01. 

Function Exact Computed 

f2(.2) 0.196 0.197 
f2(.7) 0.659 0.659 
f3(.2) 0.203 0.204 
f3(O9) 0.860 0.862 
f5(.2) 0.218 0.217 
fio(M) 1.001 1.001 
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6. Two-Dimensional Approximation. The problem of maximizing the function 
N 

(6.1) E gi(xi, Yi) 

over the domain 
N 

Z xi =x O < ai < xi x bi, xi < x, 
i=1 

(6.2) N 

Z i = y, 0< ci < yi < di, yi < y y, 

can be readily handled by the methods described in Sections 2 and 3. 
The dynamic programming recurrence relation is: 

fN(x, y) = max [gN(XN, YN) + fN-l(X - X, Y YN), 
R 

where R is determined by aN < XN - min(x, bN), CN -< YN < min(y, dN). Let 
xi, i = 1, , R, be the roots of the normalized Legendre polynomial 4R (X), 

and let {j} be a duplicate set of these quadrature points. Each function fN(x, y) 
is expressed approximately by the relation 

M M 

(6.3) fN (X MY) = E E ar s r'(x)'0s(Y)) 
r==1 s=1 

where the coefficients, using the quadrature method, are given by 
R R 

(6.4) ak,,= E E WiWjfN(Xt X 9j)0k(ti I 9j) 
i=1 j==l 

As in the one-dimensional case, we start with the known values f1(x, y) = 
g1(xi, yi), xi = x, yi = y. In stage n we store the values fn(xi X j), for i, j = 
1, 2, ., AL, then compute and store the values a(') in the storage allotted to the 
previous stage. The latter coefficients are utilized in the computation of f, (x -anal 
y - yn-4-1) to obtain the values of fn+?(xj, y,) in the next stage. 

7. Examples. 

a. Time Estimate. 
The execution time required on the 7090 was 2 minutes for 4 stages, with 

R = 5, AI = 6, a grid of H = 0.05 in the two-dimensional search, and an output 
listing of 3 test values of f(x, y) in each stage. 

b. Numerical Results. 
1. gi(x, y) = (2i - 1)112(xy)114. Using the Holder inequality, we readily ob- 

tain the exact values fn(x, y) = n(xy)114 xn(x y) = (2n - 1)x/n2, yn(X, y) = 

(2n - 1)y/n2. Our results for R = 5, A1 = 6, and a grid of 0.05 in the search 
are: 

Function Exact Computed 

f2(-5, .5) 1.40 1.40 
x2(.5 .5) 0.375 0.35 

(to the nearest 0.05) 
f4(1, 1) 4.00 3.91 
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Here again the agreement was poor at the origin, presumably because of the 
singular behavior of (xy)114 at x = 0, y = 0. To confirm this hypothesis, we con- 
sidered the next case. 

2. gi(x, y) = (x + iy)l(1 + x + iy). This case, as well as the theoretical 
values, was suggested by 0. A. Gross, and he determined the exact values. 

Function Exact I Computed 

f2(1, 1) 1.17 1.17 
f2(1, 0) 0.667 0.647 

8. Discussion. As can be seen, the agreement in general is quite satisfactory. 
We can obtain reasonably accurate values of the maximum return and of the 
optimal allocation policy using small amounts of machine time. 

Combining these techniques with the method of the Lagrange multiplier, we 
can expect to solve three- and four-dimensional resource allocation problems. 
Extending the method to cover the approximation of functions of 3, 4, 5 and 6 
variables, we can treat Hitchcock-Koopmans allocation processes of quite high 
dimension. 

Finally, if we combine these techniques--polynomial approximations and 
Lagrange multipliers with that of successive approximations, there should be 
very few allocation processes which still resist our efforts. 

The Rand Corporation 
Santa Monica, California 

1. R. BELLMAN & S. DREYFUS, Applied Dynamic Programming, Princeton University Press. 
Princeton, N.J., 1962. 


