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By H. B. Keller and J. R. Swenson 

1. Introduction. One of the classical unsolved problems in analytic number 
theory is concerned with counting the number of lattice points that lie in a circle. 
If A(r) is the number of lattice points in O1I(r) { (x, y) x2 ? y2 ? r2J then the 
problem is to find the least value of 0 such that 

(1) E(r) A(r) - rr = 0(r0). 

It has been shown by Loo-Keng Hua [1] that (1) holds for 0 = 20 and by G. H. 
Hardy [2] that it does not hold for 0 = 2. A conjecture, frequently attributed to 
Hardy, asserts that (1) is valid for all 0 > 2. 

The availability of high-speed digital computers suggests actually evaluating the 
deviation E(r) for "large" values of r in the hope of determining some further evi- 
dence of its behavior. At least three independent efforts in this direction have re- 
cently been made (as far as we know in the order: [3], [4], and the present paper). 
It is apparent from our results that the first effort [3] employed insufficiently large 
radii (r < 2000) and that the second effort [4] is incorrect for r > 3000. The present 
calculations, which extend to r = 259,750, suggest that (1) should be valid for some 
o <2. However, it also seems clear that the computations which would be re- 
quired to approximate any such lower estimate are impractical on an IBM 7090 or 
even on any other currently existing computers. 

A formula for computing A (r) is presented in Section 2. An efficient algorithm 
for evaluating this formula on a 7090 or similar machine and the corresponding 
program are described in Section 3. The numerical results are discussed in Section 4. 

2. Formulation. For any positive real number Z, let [Z] denote the integer part 
of Z. For any radius r, we define the integers 

(2) K(}) [r X/<], L(r) [r]. 

For all integers i in K(r) + 1 ? i < L (r) we define 

(3) yi(r) =-\/r2 -i2 Yi(r) = [y (r)]I 

If Q(r) is the number of lattice points in { (x, y) I x > o, y > 0, x2 + y2 < ar2} then 
(see Figure 1) 

L (r) 

(4) Q(r) = K2(r) + 2 E Yi(r). 
i =K(r)+1 

The number of lattice points, A(r), in D(r) can now be written as 

(5) A(r) = 4Q(r) + 4L(r) + 1. 

The computing problem lies in the evaluation of E Yi. It is relatively time 
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Fic. 1. Diagram to explain the counting algorithm. 

consuming to determine square roots on most existing computers and the accuracy 
required here is to within the integral part of yi . There is in fact no serious problem 
for "small" values of r (say, r < 213 8.2 X 103) either with regard to time or 
accuracy. However, if, as we desire, r2 is of the order of magnitude of the machine 
fixed point word capacity (236 - 1 on an IBM 7090) then efficiency and extreme 
accuracy are crucial. We shall describe a counting procedure to evaluate E Yi which 
employs no square root computations and is more efficient on a 7090 than any other 
procedure known to us. This procedure may not be the most efficient on a machine 
with a very fast fixed point square root instruction. 

3. Counting Algorithm and Machine Program. Let 3(r) denote the set 

3(r) -{(x, y) I y > 0; K + 1 < x _ L; (x, y) E D(r)}. 

Then Z Yj is just the number of lattice points contained in 3(r). If the lattice 
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point (i, j) E 3(r) and the point (i, j + 1) f 3(r) then Y,(r-) = j. Furthermore, 
for such a lattice point (i, j), if i > K + 1 then, as a simple geometric or algebraic 
argument shows, (i - 1, j + 1) E 3(r). Thus, roughly speaking, we can count the 
number of lattice points in 3(r) by tracing out a piecewise rectangular boundary 
which is just interior to the circular boundary of 3(r). This is done by starting at the 
point (i, j) = (L, 0) and with fixed i increasing j until M j-i2 + J2 > r_2. When 
the first such j is obtained and Y (r) = (j - 1) is accumulated in >j Y% then re- 
duce i by unity. Continue this procedure until i = K + 1. A great saving in com- 
puting time is effected by noting that 

ij~ =R2,j + 2j + 1, Ri1,j = R. - 2i + 1. 

Thus, on a binary machine, given R2,0, no multiplications are required to evaluate 
recursively the R2,j. 

The algorithm for computing A (r) based on the above observations is described 
on the flow diagram, Figure 2. This algorithm was coded in FAP for the 7090. 
Using fixed-point machine operations the closed loop 1.0 -> 1.1 -* 1.2 -> 1.0 takes 
19 machine cycles while the partial loop 2.0 -> 2.1 -> 2.2 -* 1.2 -* 1.0 requires 33 
cycles. The first loop must be used for each j in 0 < j < K(r) or essentially 
[r/ ]-/] O.7r times. The partial loop is used for each i in K + 1 ? i ? L or 
essentially [r] - [r/N/2]- 0.3r times. Since a 7090 machine cycle is about 2.18 
microseconds, this code requires approximately 51r X 10 6 seconds in order to 
compute A (r) . 

Using the 7090 fixed-point arithmetic operations a code based on the flow 
diagram of Figure 2 can compute A(r) for all r < V/2 X 217 1.8 X 105. By em- 
ploying the sign bit to record arithmetic data the range of es is easily extended to 
r < 21 =2.6 X 105. In order to do this the ordinary arithmetic machine operations 
must be modified. The closed loop then takes 22 cycles and the partial loop only 32 
cycles. The total time to compute A (r) then becomes 55r X 10 6 sec. The time 
estimates given here were found to be extremely accurate. 

For values of r such that r2 _2 the arithmetic in boxes 0.1 and 3.0 of the flow 
diagram required special higher precision techniques which do not essentially alter 
the above time estimates. In fact, by using certain tricks only (Q + L) is required 
in the 7090 in order to calculate E and a special 1401 output routine can be used to 
transform (Q + L) in octal to A(r) in decimal. 

It is a simple matter to employ the above procedures in order to count the 
number of lattice points in a sphere, say of radius p. We need only compute A(rk) 
where rk = p2 k2 for k = 0, 1, ... , [p]. Using the previous estimate this re- 

quires at least 55 (4) p2 X 10-6 sec. for the total count. 

4. Numerical Results. It is an elementary fact that A (r) is a piecewise constant 
function with discontinuities only at values of r for which r2 can be written as the 
sum of the squares of two integers. Thus, for any integer mi there are only a finite 
number of distinct values of A (r) for all r ? mn. However, it is quite impractical, for 
large in, to compute all of these values (e.g., for mi = 105 we would require the order 
of 1010 computations). Hence, we content ourselves with some uniform samplings 
in r, bearing in mind the defects in any such experimental approach. 
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FIG. 2. Flow diagram for lattice point counting algorithm. 
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TABLE 1 

l A(e) E(r) In E(r) E(r)/rl2 In rEr)r1 

250000 196349539105 -.174436 04 .600532 -.348872 01 
250250 196742432789 - .349160 04 .656313 - .697971 01 
250500 197135722817 - .159392 04 .593180 -.318466 01 
250750 197529403589 - .165132 04 .595978 - .329770 01 
251000 197923477597 - .117181 04 .568341 - .233894 01 
251250 198317943985 -.101137 04 .556454 - .201771 01 
251500 198712801597 - .232602 04 .623385 - .463815 01 
251750 199108054785 -.763754 03 .533784 -.152219 01 
252000 199503696777 - .309656 04 .646291 - .616850 01 
252250 199899736189 -.708459 03 .527657 -.141058 01 
252500 200296165009 - .161143 04 .593679 - .320687 01 
252750 200692987501 - .154149 04 .590065 -.306616 01 
253000 201090202865 - .129862 04 .576238 - .258181 01 
253250 201487810273 - .171084 04 .598349 - .339967 01 
253500 201885812629 .125849 03 .388575 .249955 00 
253750 202284203409 -.231253 04 .622471 -.459076 01 
254000 202682990469 -.116999 04 .567674 -.232149 01 
254250 203082168909 -.134654 04 .578921 - .267048 01 
254500 203481740881 -.690174 03 .525179 -.136809 01 
254750 203881703117 - .246888 04 .627530 - .489151 01 
255000 204282060473 -.182667 04 .603280 -.361735 01 
255250 204682810189 -.152354 04 .588658 -.301560 01 
255500 205083952957 -.867505 03 .543380 -.171623 01 
255750 205485487441 - .119454 04 .569028 - .236207 01 
256000 205887414661 - .148466 04 .586443 - .293431 01 
256250 206289735777 - .577861 03 .510629 - .114154 01 
256500 206692447577 - .168614 04 .596569 - .332928 01 
256750 207095553973 -.897506 03 .545897 - .177126 01 
257000 207499050769 - .240795 04 .625081 - .474986 01 

250000.000000 196349539105 - .174436 04 .600532 - .348872 01 
.015625 196349565329 - .640554 02 .334675 - .128110 00 
.031250 196349589697 - .239750 03 .440864 - .479500 00 
.046875 196349614641 .160553 03 .408603 .321106 00 
.062500 196349639409 .384855 03 .478941 .769710 00 
.078125 196349664377 .809155 03 .538729 .161831 01 
.093750 196349688785 .673454 03 .523960 .134690 01 
.109375 196349713721 .106575 04 .560891 .213150 01 
.125000 196349737825 .626047 03 .518087 .125209 01 
.140625 196349761401 - .341657 03 .469362 - .683315 00 
.156250 196349787081 .794635 03 .537273 .158926 01 
.171875 196349810921 .909264 02 .362858 .181852 00 
.187500 196349835377 .321620 01 .093988 .643239-02 
.203125 196349860537 .619504 03 .517242 .123900 01 
.218750 196349885521 .105979 04 .560439 .211958 01 
.234375 196349910209 .120407 04 .570709 .240815 01 
.250000 196349934809 .126035 04 .574384 .252071 01 
.265625 196349959225 .113264 04 .565788 .226528 01 
.281250 196349983153 .516922 03 .502677 .103384 01 
.296875 196350007041 - .138798 03 .396889 - .277596 00 
.312500 196350031185 - .538520 03 .505971 - .107704 01 
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TABLE 1-Continued 

r A(,) () In E(r) / E(r)/r112 
In r 

250000.328125 196350055801 - .466245 03 .494376 - .932489 00 
.343750 196350080809 - .197063 01 .054578 - .394127-02 
.359375 196350105305 - .496977 02 .314256 - .993954-01 
.375000 196350129513 - .385426 03 .479060 - .770852 00 
.390625 196350153921 - .521156 03 .503334 - .104231 01 
.406250 196350178761 - .224888 03 .435715 - .449776 00 
.421875 196350202577 - .952621 03 .551862 - .190524 01 
.437500 196350227629 -.444356 03 .490507 -.888711 00 
.453125 196350252989 .371907 03 .476188 .743813 00 
.468750 196350277597 .436169 03 .489011 .872338 00 
.484375 196350302053 .348430 03 .470941 .696859 00 
.500000 1963503268405 .596689 03 .514223 .119337 01 

TABLE 2 

e 1A(r) E(r) In I E(r) 1/ E(r)/r12 Inr 

1000 3141549 -.436535 02 .546673 -.138044 01 
2000 12566345 - .256143 02 .426680 - .572754 00 
3000 28274197 -.136882 03 .614401 - .249911 01 
4000 50265329 - .153457 03 .606871 - .242637 01 
5000 78539677 -.139339 03 .579641 -.197056 01 
6000 113097185 -.150529 03 .576372 - .194332 01 
7000 153937805 - .235025 03 .616659 - .280909 01 
8000 201061681 - .248829 03 .613847 - .278200 01 
9000 254468477 - .527940 03 .688522 - .556498 01 

10000 314159053 - .212358 03 .581767 - .212358 01 
20000 1256636857 - .204435 03 .537210 - .144558 01 
30000 2827432965 -.423230 03 .586666 -.244352 01 
40000 5026547529 - .716743 03 .620453 - .358371 01 
50000 7853981045 - .588974 03 .589511 - .263397 01 
60000 11309732881 - .671923 03 .591718 - .274311 01 
70000 15393802989 -.101358 04 .620392 -.383100 01 
80000 20106192121 - .861974 03 .598702 - .304754 01 
90000 25446899381 - .111307 04 .614932 -.371025 01 

100000 31415925457 - .107889 04 .606596 - .341177 01 
125000 49087384401 -.811340 03 .570777 - .229481 01 
150000 70685833345 -.136077 04 .605434 -.351349 01 
175000 96211274253 -.763187 03 .549801 -.182436 01 
200000 125663704421 - .172259 04 .610481 - .385183 01 
225000 159043126541 -.154698 04 .595922 - .326132 01 
250000 196349539105 -.174436 04 .600532 -.348872 01 



EXPERIMENTS ON THE LATTICE PROBLEM OF GAUSS 229 

.6 * 

cvr o t i A - 

4___ r 

.3 - 

r 
FIG. 3. Distribution of some computed values of in I E(r) I /lnr. 

Computations were made for each value of X in the following sets: 

a) r = 1(1)10,000 g) r = 200,000(1)200,099 
b) r = 10,000(250)100,000 h) r = 250,000(1)250,099 
c) r= 100,000(10,000) 150,000 i) 2r= 100,000(--L) 100,002 
d) r= 150,000(250)259,750 j) r = 150,000(--T)150,002 
e) r= 100,000(1)100,099 k) r= 200,000(-gL)200,002 
f) r= 150,000(1)150,099 1) r = 250,000(-L)250,002. 

The quantities computed were: E(r), E(r) /r"12) Iln I E(r) f/ln r, In I E(r) /r112 2/ln r, 
and E(r) /(r in r)1/2. The values of A (r) and E(r) were compared with all the values 
reported in [4]. Exact agreement for A (r) and agreement to at least five digits 
for E(r) was observed for r = 1(1)1,000 and r = 2,000. However, the remaining 27 
values of A (r) for r in 3,000 < r < 200,000 reported in [4] did not agree with our 
values. Independent check calculations were made for r = 3000, = 4000, = 5000 by 
using equations (2)-(5). The square roots were evaluated by means of a Newton- 
Raphson subroutine and exact agreement for A (r) with those computed by the 
method of Section 3 was obtained. Thus, we conclude that the results in [4] are in- 
correct for r > 3000. We also believe that our calculations are correct for all re- 
ported values of r. Since our method depends upon r only through the quantities 
r12 K(r), and L(r) and then only integer arithmetic is performed on numbers which 
fit into a machine word, it seems quite likely that our claim is justified. 

Table 1 lists a small sample of the numerical results from sets d) and 1) and 
Table 2 lists sample results from sets a)-d). The numbers in the columns headed 
E(r) and E(r) /r1/2 are in floating decimal notation with signed exponents and those 
in the A (r) column are integers. Positive values of E(r) were observed to be ex- 



230 HERBERT B. KELLER AND J. R. SWENSON 

tremely rare for integer values of r. For example, in the approximately 890 cases 
contained in sets c)-h) only one such value was found, namely, r = 253,500. How- 
ever, in the sets i)-l) the sign distribution of E(r) was about uniform or perhaps 
even slightly biased in favor of positive values. 

In Figure 3 values of In j E(r) f/ln r vs. r are plotted on a semi-log scale. The 
dots have the abscissae: r = 3000(200) 6000(500) 2 X 104(103) 3 X 104(2 X 103)6 X 
104(5 X 103)2 X 105(104)2.6 X 105. The horizontal lines in Figure 3 of ordinate 0.5 
and 0.65 represent respectively Hardy's lower bound and Hua's upper bound on the 
order 0 in equation (1). The points marked with an X in Figure 3 were plotted to 
indicate that not all values computed for r > 105 were below Hua's bound. Many 
such values of In I E(r) I/ln r > 0.65 were obtained in the sets i)-l) at non-in- 
tegral values of r. The largest such value observed in 105 < r < 259,750 was 0.672 
at r = 103,000. 

The results summarized in Figure 3 clearly suggest that (1) is valid for 0 = 0.70 
or even perhaps for 0 = 0.68. But since it is known to be valid for all 0 > 0.65 
no useful quantitative estimates are obtained. However, an extrapolation of these 
data does suggest that a smaller order should suffice and that computations for 
larger values of r could indicate this. For example, to obtain a significant improve- 
ment, say 0 < 0.60, a crude extrapolation implies a radius of about 108. Unfortu- 
nately, calculations for such radii, employing a partial-double-precision version of 
our present method on a 7090, would require at least two hours per case. Hence, 
they are impractical for the number of cases required to show a reasonable trend 
in the data. Furthermore, serious problems arise in attempting to insure the ac- 
curacy of such computations. 

It was also observed that for all of our calculations I E(r) I/r112 < 7. Since by 
Hardy's result this ratio is unbounded we must conclude that either our sampling 
is too crudely spaced or more likely that our range in r is relatively small. 
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