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1. Introduction. The following specific problem in fitting a theoretical curve to 
a given set of data forms the basis for the general method discussed in the present 
note: Some experimental data is given in the form of a discrete function g on an 
interval [a, b] of the real axis. It is known that the data is associated with a phe- 
nomenon which in principle is represented analytically by the function f whose value 
at each point x of [a, b] is given by (3 - ax) /ln (0//x). It is required to find the 
values of the two parameters ar and /3 such that the theoretical curve is as close as 
possible, in the least square sense, to g. 

The most direct approach to the solution of this problem is to choose a value of 
a and 3 and to compute the number 

(*) G(a, d) fb [g(x) -I (ld/c)] dx. 

This process is then repeated a number of times which results in a set fG(ai , /1), 
... , G(a, c, fn) } of values of the integral (*). This set may then be inspected for a 
possible minimum. After some experimentation, a pair (ao , /3o) may be found at 
which the function G attains a minimum. We then say that the function whose 
value at each x in [a, b] is (3o - cox) /ln (/3o/caox) best approximates the given func- 
tion g on [a, b] in the least square sense. 

Now the direct approach outlined above can be considerably shortened and 
made somewhat less hazardous ("Have I really found the pair (ae, 3) which mini- 
mizes G?") by observing the following interesting property of the given theoretical 
function f: For each x in [a, b] 

ax ~~ax 

where we have set t = ca/$. The immediate consequence of this observation is that 
we have factored one of the parameters out of the theoretical function, leaving a 
new function which is the product of /3 (one of the original parameters) and a func- 
tion which has only one parameter (namely t). One would suspect that the trial 
and error procedure of the direct approach could be appreciably shortened by 
capitalizing on this fact. We shall now show that this is indeed the case. The net 
result is a general method of finding the best fitting two-parameter function by 
means of one-parameter techniques, i.e., using techniques that allow a determina- 
tion of the required pair (a /oo) one member at a time instead of two at a time as in 
the preceding direct approach. Before going into the details of the method, it is of 
interest to see how large a domain of two-parameter functions is accessible to this 
method. 
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2. Semi-Homogeneous Two-Parameter Functions. The theoretical function f 
discussed above is a special case of a two-parameter function f(.; a, /3) with the 
property that for each x in [a, b], 

(1) I. f(x; a, /3) = a1YF(x; t), O = d/a, n > 0 

or with the property: 

(2) II. f(x; a, A) = on3F(x; t), t =a/, n > O 

where the domain of parameters of F is the real line. A function f(.; ca, /) on an 
interval [a, b] with property I or II is said to be a semni-homnogeneous function of two 
parameters (of degree n). TwO functions are similarly homogeneous if they are both 
of type I or both of type II. 

Some examples of semi-homogeneous functions of two parameters are: 

f(x; a, /3) = (/ - ax)'/ln (O/3ax), n > 0 

J'(x; c, /3) = (a + /3x) , n _ O 

fJ(x; ca, /) = (a + OXx)nsin (ax//3), n ? 0 

f(x; a, 3) = (a + OX) nexp (aO/), n > 0 

J(x; a, /) = (a + OXx)nF(x; t), t = a//3, n ? 0 

New examples of semi-homogeneous functions can be manufactured from old 
ones by observing that under suitable conditions the sum, difference, and product 
of two similarly homogeneous two-parameter functions (with the same parameters) 
is again a semi-homogeneous function of the same type. Thus, e.g., if f(.; a, 3) 
and g(.; ar, /3) are similarly homogeneous of type I and of degree it and n, 

h(x; ca, /) = f(x; ca, /3)g(x; ca, /3) 

- c'mF(x; t)ca G(x; t) 

m+UnH(x; t) 

where 

H(x; t) =F'(x; t)G(x; t). 

If f and g are of the same degree their sum (or difference) is again a semi- 
homogeneous two-parameter function of the same type and degree. These algebraic 
properties are summarized below: Every set of similarly homogeneous functions of 
the same parameters is closed under the operations of 

a) Sum 
b) Difference 
c) iMultiplication 
d) Division (when possible) 
e) Multiplication by a scalar when the functions are of the same degree; 
A set is closed under the operations of: 
a) MAIultiplication 
b) Division (when possible) 
c) Multiplication by a scalar-when the functions are of arbiteary degree 
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Finally, the sum of two semi-homogeneous functions of dissimilar type but of same 
degree, is semi-homogeneous of one or the other type. 

One is now naturally led to ask: what happens if two semi-homogeneous func- 
tions of dissimilar type are multiplied together? In this way we come to the con- 
cepts of the following section. 

3. Homogeneous Two-Parameter Functions. To answer the question raised in 
the preceding section, considerf; oa, ,3) and g(; a, 3) which are of type I and II 
respectively. Then: 

h(x; a, A) -f(x; a, 3)g(x; a, 3) 

a anF( ); /3 nG(x; t), t = a//3 

= ano , (x; t) 

where 

H(x; t) = F (x;. G(x; t). 

We will then say that a two-parameter function( ; a, d) on [a, b] is homogeneous 
of degree in in a and degree n in 3 if for each x in [a, b], 

(3) f(x; a, 3) = ma"F(x; t), t = a/3 t, n > O. 

From this definition, the following properties of homogeneous two-parameter func- 
tions are easily deduced: 

The product of two homogeneous two-parameter functions of arbitrary degrees 
in the parameters is again homogeneous; if they are of the same degree in each 
parameter their sum and difference is homogeneous and of the same degree in each 
parameter. In any event, multiplication by a scalar preserves homogeneity. 

Perhaps the most important observations at this point of the discussion are 
first that the set of all semi-homogeneous two-parameter functions on [a, b] is a 
proper subset of the set of all homogeneous two-parameter functions on [a, b]; and 
secondly, that the main problem of the best fit to a given curve can be solved with 
comparable ease in the more general homogeneous context as in the semi-homogene- 
ous context. We now turn to the details of the method. 

4. Derivation Of The Method. Let g be a given function on an interval [a, b]. 
Here g represents, for example, a set of given physical data correlated with the 
numbers of [a, b]. Then g is to be approximated by a member of some given family 
of homogeneous two-parameter functions f( *; a, A) on [a, b] (of fixed degrees li > 0 
in a and n _ 0 in : such that not both m and n are zero) such that the function G 
defined for each pair (a, /) of parameters by: 

rb 
G(a,/) = fb[g(x) -f(x; a,/)12 dx 

- f [g(x) - a1X3 F(x; 1)12 dx, t = a// 
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attains a minimum for some pair (ao, o3o). It will be assumed that the required 
parameters ao and fo are not zero so that the calculations below can be carried out 
without ambiguity. The singular possibilities (ao = 0 or j3 = 0) can be examined 
to see if they yield a solution after the pair has been found by the procedure now to 
be described. 

A necessary condition that G attains a minimum at (ago, /3o) is that 

aG(ao, Io) 0 aG(ao, 3o) 0 

In more detail, these conditions require: 

f [g(x) - aom'3oF(x; to)] [-maom l00F(x; to) -aomlon (;t?) _"] dx = 0 a9t g00 

/ [g(x) - aomdo F(x; to)] [-nao on F(x; to) + am ? aFxt) a-] dx = O. 

Multiplying the first equation by ao/io, and adding the result to the second, it 
follows that 

rb 

(m + n)ao m"o8 f [qg(x) - aom3ooF(x; to)]F(x; to) dx = 0. 

By the standing agreement on the values of m n, ao fi, it follows that the integral 
must be zero, so that 

rb 

( g(x)F(x; to) dx 

(4 ao mon = 

F2(x; to) dx 

This is the key theoretical relation for the present method. To see the role it 
plays, we assume, as is suggested by (4), that the product y = a'm#n is a function 
of t. Then the general expression for G(a, A) can be written as 

b 

H(t) f [g(x) - y(t)F(x; t)]2 dx 

which unfolds into: 
b b ~~~~~~~~~~~~~~~~~~~b 

H(t)=f g2(x) dx - 27(t) f g(x)F(x; t) dx + zy2(t) f F2(x; t) dx 

making use of the definition 

f g(x)F(x; t) dx 
(5) Y(t) - b 

F2(x; t) dx 

we deduce that 

(6) H(t) 2J 2(X) dx - 72(t)] F2(x; t) dx _ 0. 
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It follows that H(t) is a minimum when the quantity 

J(t) y2(t) f F2(x; t) dx _ 0 

is a maximum, i.e., when 
-b -2 

LIgWxF(x, t) dx 
(7) J(t) = 

[ f F2(x; t) dx 

is a maximum. 
The problem of minimizing G(ai, 3) by varying the two parameters a and 3 

simultaneously has now been reduced to the problem of maximizing J(t) by varying 
the one parameter t. For when the to which maximizes (7) is found, we return to 
(4) and compute aomfOon = yo as shown. By noting that y = tom'om+n we can then 
find fOm+u and all the (possibly complex) (m + n)th roots of fom+u. Then for each 
root Oo we compute the corresponding agO by means of the relation aoO = to0oo. The 
physical or mathematical context of the particular curve-fittin9 problem at hand 
should then lead to the choice of the appropriate pairs (ao , io). 

5. Summary Of The Method. 
Given: An empirical function g on an interval [a, b], and a family of homogeneous 

two-parameter functions f(; c , a3) on [a, b] of degree m > 0 in ae and n > 0 
in 0 such that not both in and n are zero. 

Required: The values aoO and Oo of ae and 0 such that 
b 

G(a, 3) = f [g(x) - f(x; a, )]2 dx > G(ao,) o) 

for all (ae, ). 
The required pair (ao , so) is found as follows: 
1. Compute J(t) over some range where 

-b _2 

[ g(x)F(x; t) dx 
J( t) = a_ _ _ _ _ 

f F2(x; t) dx 

and where F(x; t) is defined by: 

f(x; a, ) = amF(x; t) 

2. Find to which maximizes J(t). Let this maximum be J(to). 
3. Compute 

To = J(to) [ g(x)F(x; to) dx]. 

4. Compute 

+o = 'Yo/to 
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and then #o (in either real or complex form as required by the problem at 
hand). 

5. Compute 

ao = todo 

6. Compare G(ao, 0), G(O, do), G(O, 0), and G(ao, do) and choose that 
pair: (ao, 0), (0, fi), (0, 0), (ao, fo) which minimizes G(a, A). 

Observations: The last step 6 is needed to complete the procedure since the 
possibilities ao = 0 and fo = 0 where excluded from the analysis leading to 
steps 1-5. Finally, it may be that a particular F(x; t) associated with a 
homogeneous two-parameter function is such that step 2 yields more than 
one value of the parameter to . In this case the method yields several additional 
pairs (ao , do) which must be examined for the minimizing property. 
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