
TECHNICAL NOTES AND SHORT PAPERS 

Alternating Direction Iteration Methods For 
n Space Variables 

By J. Douglas, Jr., R. B. Kellogg, and R. S. Varga 

We consider the iterative solution of the system of linear equations 

(1) (X1+X2+ - +Xn)z=f, n > 2, 

where each Xi, 1 < j < n, is a Hermitian and positive definite N X N matrix. 
If n = 2, the iterative methods of Peaceman-Rachford [1, Chapter 7], or D'yakonov 
[2] and Kellogg [3], may be used to solve (1). In this paper these methods are gen- 
eralized to n > 2, and are shown, in a sense, to be dual to one another. 

Let p > 0 be fixed, and define zj = (pI + Xj)z. From (1) we get the compound 
nN X nN matrix equation 

Il -W2( P) * Wn (P) Z1 _f 

(2) J-Wi(P) I -Wn(p) jz2 = 
- W1(P) - W2(P) ... I J Zn U 

where 

(3) Wj(p) = (PI + Xj)- ( t, P I-X) 

Our first set of alternating direction iterative methods will be the block Jacobi 
and block Gauss-Seidel iterative methods applied to (2), namely 

(4) (PI + Xj)Ujm+l) = E I - Xk) Uk +, 1 _ j _ 
k -j n -1 

and 

(PI+ X~u(M~ /p I - Xk Uk(m+l) 
(pI ? Xn)ujm kid - 1 k) k 

+ A ( P I - Xk) Uk? +? 

If n = 2, (5) is the Peaceman-Rachford method. 
We now form the transpose of the matrix of (2), and consider the compound 

matrix equation 

I -Wi(p) ** -Wi(p)_ Y1 9[ 

(6) S-W2(P) I -W2(p) jjy2= 9g2 

- Wn (P) -Wn(P) I iLn n] 
If the block Jacobi and block Gauss-Seidel iterative methods are applied to (6), 
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one obtains the alternating direction iterative methods 

,.)Y.(M~J)Z~lm) f=, I ?j < n 
(7) (pi +Xj)yjm ) ( (p I - Xj 5E Yk + 1 _ 

and 

( I + X )yjm+l) = (1 I - x3) {Z Yk 
+ E Yk } + fH 

1 j < n. 

Here fj = (pI + Xj)gj, and it is assumed that 

(9) fit + + fn = f 

When n = 2, (8) is the method of D'yakonov. Thus, the Peaceman-Rachford 
iterative method and D'yakonov's method (and their generalization) are dual to 
one another in the sense that either can be viewed as the Gauss-Seidel iterative 
method applied to a particular composite matrix or its transpose. 

Since each matrix Xj is Hermitian and positive definite, let the eigenvalues 
Xj(j) of Xj satisfy 

O < a _ ?X(j) < b, 1 < i < NY < j < n. 

THEOREM. If p > (n - 2)b/2, and {uj(m)} is defined by (4) or (5), and {yj(m)} 

is defined by (7) or (8), then 

(10) lim um) = Z for each 1 < j < n, 
m->oo 

and 

( 11 ) lim (yam) + ... + Yn(m)) =Z 

where z is the solution of (1). 
Proof. Using spectral (L2) norms, it is easy to see that there exists a q < 1 

such that 

I1W (p)11= max < < < n 
1?i?N p + xi() n-1 n -i = 

for p > (n 2) b. Letting 

v - []V2 
L_Vn_ 

denote a column vector with nN components it is readily verified that the quantity 

(12) = max v 
1 ?j ! n 

satisfies all the axioms for a vector norm, where in particular we are using Euclidean 
norms for the subvectors vs of P. Let us denote the compound matrix of (2) by 
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IW-W. It follows that for all v and all p > (i y2) b, 

(13) 1a !'VJ 11 q 11 < 1 I1, 
so W is a convergent matrix. But, as W is just the block Jacobi iteration matrix 
derived from (2), the block Jacobi iterative method of (4) is convergent. If IV* is 
the conjugate transpose of TW, the same argument shows that 11 W* 11 < 11 v 11 so 
the iterative method of (7) is also convergent. A similar argument shows that 
the block Gauss-Seidel methods (5) and (8) are convergent. 

If Uj = limmOO uj(M) in (4) or (5), the zj satisfy the system of equations 

(PI + Xj)uj = E(f I - Xk Uk + 1 j < n. 

Using (13), it may be seen that this system has a unique solution. Since uj = z, 
1 < j < n, is a solution, (10) is obtained. 

If yj = lim"". yj(m) in (7) or (8), the yj satisfy the system of equations 

(PI ~ ~ ( - 1iY X- ) E Yk + f j, < j < n. 

Adding these, one obtains (Xi + * + Xn)(y, + * + yi) = f, so that (11) is 
obtained, proving the theorem. 

We remark that this theorem can also be deduced as an application of a gen- 
eralization [4] of the well known result of Collatz [5], viz., that a strictly diagonally 
dominant matrix gives rise to convergent Jacobi and Gauss-Seidel iterative methods. 
For the norms of (12), the partitioned matrix of (2) or (6) is block strictly diago- 
nally dominant in the sense of [6]. 

Because of the restriction p > (n - 2)b/2, it is doubtful that this procedure con- 
verges very rapidly, and for this reason, no estimates of rates of convergence are 
included. (This restriction on p is necessary even in the favorable case when the 
Xj all commute with one another.) We stress, however, that the main point of this 
paper is the theoretical result of convergence without commutativity assumptions 
on the matrices Xj. To our knowledge, similar results have not been proved for 
other alternating direction methods applied to n-dimensional problems, n ? 3. 
Complementary to this is the fact that three-dimensional matrix problems have 
been constructed* for which the Douglas-Rachford method [7] and the generalized 
Peaceman-Rachford method of Douglas [8] each diverge for a suitable single positive 
parameter p. 

Finally, it is worth mentioning that our generalization of the Peaceman-Rach- 
ford iterative method (5) is computationally more attractive than our generaliza- 
tion of the method of D'yakonov, since the latter requires, from (11), more vector 
storage in practical applications. 
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* Personal communication from Dr. Willis Guilinger of the Bettis Atomic Power Lab- 
oratory, Pittsburgh, Pa. 
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Generation of Permutations by Adjacent 
Transposition 

By Selmer M. Johnson 

1. Introduction. In D. H. Lehmer's review [1] of a paper by Mark Wells [2], 
"Generation of Permutations by Transposition," he states: 

"The author describes a new systematic method of generation permuta- 
tions with the interesting feature that each permutation is derived from its 
predecessor by a single interchange of two marks. In more than half the cases 
the two marks are adjacent." 
In the present paper a different method is described in which each permutation 

is derived from its predecessor by a single interchange of two marks in adjacent 
positions. Moreover, the rules are extremely simple. 

First the method will be described in terms of the marks themselves. Then the 
method will be restated in terms of positions. 

2. The Method in Terms of Marks. Define indices 1(k) for k = 1, 2, .n, 

where I(k) is 0 or 1 according as the permutation on the marks 1, 2, 3, ... ,k - 1 
is even or odd. By convention, let 1(1) = I(2) = 0. Define T(k) to be the inter- 
change of the mark k with some smaller mark immediately to the left [right] accord- 
ing as I(k) is 0[1]. 

Our rules for generating the next permutation are as follows: 
1) At each stage apply T(m), where m is the largest mark for which T(m) is 

defined. 
2) Change the indices I(k) for m < k ? n. 
Repeat the cycle of steps on the new permutation, etc. 
Note that according to these rules we apply T(m) only when all larger marks 

are at the extreme left or right of the set of marks (1, 2,--, m) in some order. 
It is clear that this method will generate all n! permutations on n marks once 

and only once. For each fixed permutation on the marks from 1 to k we move the 
mark k + 1 in one direction through every possible position, thus giving each 
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