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Generation of Permutations by Adjacent 
Transposition 

By Selmer M. Johnson 

1. Introduction. In D. H. Lehmer's review [1] of a paper by Mark Wells [2], 
"Generation of Permutations by Transposition," he states: 

"The author describes a new systematic method of generation permuta- 
tions with the interesting feature that each permutation is derived from its 
predecessor by a single interchange of two marks. In more than half the cases 
the two marks are adjacent." 
In the present paper a different method is described in which each permutation 

is derived from its predecessor by a single interchange of two marks in adjacent 
positions. Moreover, the rules are extremely simple. 

First the method will be described in terms of the marks themselves. Then the 
method will be restated in terms of positions. 

2. The Method in Terms of Marks. Define indices 1(k) for k = 1, 2, .n, 

where I(k) is 0 or 1 according as the permutation on the marks 1, 2, 3, ... ,k - 1 
is even or odd. By convention, let 1(1) = I(2) = 0. Define T(k) to be the inter- 
change of the mark k with some smaller mark immediately to the left [right] accord- 
ing as I(k) is 0[1]. 

Our rules for generating the next permutation are as follows: 
1) At each stage apply T(m), where m is the largest mark for which T(m) is 

defined. 
2) Change the indices I(k) for m < k ? n. 
Repeat the cycle of steps on the new permutation, etc. 
Note that according to these rules we apply T(m) only when all larger marks 

are at the extreme left or right of the set of marks (1, 2,--, m) in some order. 
It is clear that this method will generate all n! permutations on n marks once 

and only once. For each fixed permutation on the marks from 1 to k we move the 
mark k + 1 in one direction through every possible position, thus giving each 

Received July 6, 1962. 



GENERATION OF PERMUTATIONS BY ADJACENT TRANSPOSITION 283 

permutation on k + 1 marks once and only once provided we have every permuta- 
tion on k marks once and only once. Since the method can be verified for k = 2 or 3, 
the induction is complete. 

It will be noted that the process will automatically stop at the permutation 2, 1, 
3, 4, 5, 6, * * , n since there is no legal move left. 

3. The Method in Terms of Positions. The above method can be restated for a 
computing machine by determining the left-hand position of the adjacent pair of 
positions whose marks are to be interchanged. 

Let n > 1. Let PN be the Nth permutation starting with Po = 1, 2, 3, * , n. 
Let N > 0 and 

N !d2+ d3 + dn-1-l dn 
7 

N=n_T! +3! (n -1)! +n!t 

where dk = 0 1, 2, * * , or k -1. By convention, do = di = 0. We indicate this by 

N = (d2 , d3 , d4, . , dn-1, dn). 

Starting with 

1= (0, 0, 0, ... , 0, 1), 

n-1 =(0, 0,0,.**, 0, n-1), 

n = (0, 0, 0,7 
.. ** 1, 0), 

n(n-1)-1 = (0, 0, 0, ... , n-2, n-1), 

n(n-1) = (0, 0,0, , 1, 0, 0), 

we end with 

n!-1 =(1,2,3,. .,n-2,n-1). 

Fix N = (d2 I d3 , d4 . * dn-1 , dn) and let k be the largest subscript for which 
dk > 0. 

Then to generate PN from PN-1 we interchange marks in position S(N) and 
S(N) + 1, where 

(1) S(N) = aN(k) + bN(k)). 
Here we have 
(2) aN(k) = k -dk[dk] if dkl + (k - 1)dk-2 is even [odd]; 
(3) bN(n) = 0; 
(4) bN(n - 1) = 0[1] if dn-1 + (n - 1)dn-2 is even [odd]; 

for even k <n - 1, 
(5) bN(k) = 0[2] if dk is even [odd], 

and for odd k <n - 1, 

(6) bN(k) = 0[1] if dk + dkl is even [odd]. 
First we relate the indices on each k with the d's for each N. Letting IN(k) = 

the index of k for PN , we note that, for k -1 even, 
(7) IN(k) = 0[1] if dkl is even [odd]. 
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At the start, both dkl1 and Io(k) = 0 and there is a change in parity on both dkl 

and IN(k) at every multiple of k(k + 1) n. We see that dk-l runs through an 
even number of values 0, 1, 2, , J-2, and then repeats the cycle, thus alter- 
nating even and odd. Likewise, there is a change in parity on the permutations of 
the marks 1, 2, ,*,ok-1 for such N, so that IN((k) - IN(J(k). 

For k - 1 odd, note that IN(k) and dkl + dk-2 change parity every multiple of 
k(k + 1) - * n steps since dk-l runs through an odd number of values 0, 1, 2, * Y 
k - 2 and then repeats the cycle. By adding dk-2 to dkl, we have a quantity ex- 
pressed in terms of the d's for each N which has the same parity as that of IN(k). 
Here 

(8) IN(k) = 0[1] if dk-l + dk-2 is even [odd]. 
These two cases can be combined as follows: 

(9) IN(k) = 0[1] if dkj + (k - 1)dk-2 is even [odd]. 
Next, from the description of the method in the previous section and from the 

definition of N in terms of the d's, we observe that for each N, k is the mark to be 
moved, aN(k) is the left-hand position of the interchange pair relative to the set 
of marks from 1 to k, bN(k) is the number of marks larger than k currently anchored 
at the extreme left of the permutation. Thus bN(k) is added to aN(k) to get the 
correct left-hand position of the interchange pair relative to the complete set of n 
marks. 

To see this, observe that aN(k) = k - dk if the mark k is to be moved to the 
left, i.e., IN~-1(k) = 0 = IN(k). Also, aN(k) = dk if the mark k is to be moved to 
the right, i.e., IN1((k) = 1 = IN(k). Combining these remarks with (9) gives (2). 

Now, turn to bN(k). It is clear that bN(n) = 0. Also, for N any odd [even] 
multiple of n we have the mark n at the left [right] with IN-1(n) = 0[1]. Thus we 
have PNlj of type either 

n?, (Peven(l, 2, ... , n - 1)) or (Podd(l, 2, * .. , n - 1)), n', 

with even or odd permutations on the marks 1, 2, .. , n- 1. Here indices are 
indicated as superscripts. 

Then bN(n - 1) = 1[0] if IN-1(n) = 0[1] or if IN(n) = 1[O], since there will 
be a change in the index of n at this stage. These remarks together with (9) give 
(4). 

Next for k < n - 1 and N an even multiple of (k + 1) (k + 2) n, note 
that the mark k + 1 has made an even number of passages through the smaller 
marks and is currently at the right of them, as are all the marks > k + 1. Then 
PN-1 is of the type 

(Podd(l 2, ... * k)), (k + 1), (l + 2) n 

and since k is moved here to get PN we note that IN-1(k + 1) = 1, so IN(k + 1) = 0. 
Thus by (7) we have bN(k) = 0 if dk is even for Jo even, or if dk + dk-l is even for 
ko odd by (8). 

For N an odd multiple of (k + 1) (k + 2) ... n and odd k < n - 1, the mark 
k + 1 has made an odd number of passages through the smaller marks and is then 
at the left with IN1((k + 1) = 0. Since k is odd, however, the permutation on the 
marks 1, 2, * , k + 1 is odd, so that k + 2 is at the right of these marks with 
IN, (k + 2) = 1, as are all other marks > k + 2. Thus we have a permutation 
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PN1 of the type 

(k + 1), (Peven(, 2, , k)), (k + 2)1, (k4 + 3)1 ..., (n)1. 

Thus bN(k) = 1 if k is odd and IN-1(k + 1) = 1, i.e., IN(k + 1) = 0. By (8), we 
have (6). 

Finally, for even k < n - 1 and N an odd multiple of (k + 1) (k + 2) ..., 

the mark k + 1 will have made an odd number of passages through the smaller 
marks and will be at the left of an even permutation of the marks from 1 to k. 
Thus the permutation of the marks from 1 to k + 1 is also even since k is even 
and so IN-l(k + 2) = 0 with k + 2 at the extreme left. The permutation on the 
marks 1, 2, *.-, k + 2 is then odd, so that k + 3 is at the right of these marks 
with IN-l(k + 3) = 1, as are the marks larger than k + 3. The permutation PN- 

is of the type 

(k + 2)0, (k + 1)0, (Peven(1l 2, ... k)), (k + 3)', (k + 4)1, ... , 

Since IN-1(k + 1) = 0, IN(k + 1) = 1, or by (7) we see that bN(k) = 2 for 
even k < n - 1 and dk odd as (5) states. 

The following table illustrates the technique as applied to the generation of 24 
permutations on 4 marks, reading downward rather than left to right: 

111441113334433322244222 
224114331143342233422411 
342233422411224114331143 
433322244222111441113334 
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Determinants by Means of Solutions of Linear 
Equations 

By R. W. Preisendorfer, B. W. Roos & W. C. Sangren 

1. Introduction. In this paper, we are considering the converse of the classical 
problem of "Solutions of Linear Equations by Means of Determinants." The present 
problem arises from the occasional need for the explicit value of a determinant asso- 
ciated with a system of equations that is being solved by a machine method which 
does not necessarily involve the classical Cramer method of solution using deter- 
minants. Suppose then that a particular program of computation for the solution 
of a system of linear equations does not explicitly evaluate the determinant of the 
matrix of the system, but that nevertheless the determinant for some reason is 
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