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PN1 of the type 

(k + 1), (Peven(, 2, , k)), (k + 2)1, (k4 + 3)1 ..., (n)1. 

Thus bN(k) = 1 if k is odd and IN-1(k + 1) = 1, i.e., IN(k + 1) = 0. By (8), we 
have (6). 

Finally, for even k < n - 1 and N an odd multiple of (k + 1) (k + 2) ..., 

the mark k + 1 will have made an odd number of passages through the smaller 
marks and will be at the left of an even permutation of the marks from 1 to k. 
Thus the permutation of the marks from 1 to k + 1 is also even since k is even 
and so IN-l(k + 2) = 0 with k + 2 at the extreme left. The permutation on the 
marks 1, 2, *.-, k + 2 is then odd, so that k + 3 is at the right of these marks 
with IN-l(k + 3) = 1, as are the marks larger than k + 3. The permutation PN- 

is of the type 

(k + 2)0, (k + 1)0, (Peven(1l 2, ... k)), (k + 3)', (k + 4)1, ... , 

Since IN-1(k + 1) = 0, IN(k + 1) = 1, or by (7) we see that bN(k) = 2 for 
even k < n - 1 and dk odd as (5) states. 

The following table illustrates the technique as applied to the generation of 24 
permutations on 4 marks, reading downward rather than left to right: 

111441113334433322244222 
224114331143342233422411 
342233422411224114331143 
433322244222111441113334 
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Determinants by Means of Solutions of Linear 
Equations 

By R. W. Preisendorfer, B. W. Roos & W. C. Sangren 

1. Introduction. In this paper, we are considering the converse of the classical 
problem of "Solutions of Linear Equations by Means of Determinants." The present 
problem arises from the occasional need for the explicit value of a determinant asso- 
ciated with a system of equations that is being solved by a machine method which 
does not necessarily involve the classical Cramer method of solution using deter- 
minants. Suppose then that a particular program of computation for the solution 
of a system of linear equations does not explicitly evaluate the determinant of the 
matrix of the system, but that nevertheless the determinant for some reason is 
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required. Furthermore, suppose that it is expedient at the moment to use, if pos- 
sible, the actual program at hand to evaluate the required determinant, rather than 
to use one of several existing techniques specifically designed to perform this 
special task. The question then arises: Is there some way in which the determinant 
of a system of equations can be evaluated using an arbitrary method of solution of 
the system? Some reflection will show that the answer is yes. The details of the 
required analytic procedure spring into view if we phrase the question in the fol- 
lowing analytic terms. 

Let I A I be the determinant of an n X n matrix A = (axj). Suppose that an 
associated system of linear equations is formed from A: 

Ax= y, 

where x = (xi, , x,), y = (yi, - - , y.). Is there some way of choosing specific 
values of the components of y so that the resultant components of x can be used, 
via a simple algorithm, to obtain I A ? The choice of y and the required algorithm 
turn out to be quite simple. 

2. The Algorithm. Let A = (atj) be a nonsingular n X n matrix. 
Cycle 1, Step 1. Form the system of n equations in n unknowns, 

n 

Zaijxj =yi i= 1,2, ,n 
j=l 

Cycle 1, Step 2. Set yi = 1, y= 0, i = 2, ,n. 
Cycle 1, Step 3. Solve the system for the resultant xi's and choose ji so that 

x(n, ji) is the first nonzero member of the solution x = (x1, ), x). 
Cramer's rule states: 

x(n, ji) = (-1)il+l I A(n -1 ji) I 

where A (n - 1, ji) is the matrix obtained by deleting the first row and the ji 
column of A. 

Cycle 2, Step 1. Repeat the first step, but apply it to the nonsingular (n - 1) X 
(n - 1) matrix, A (n - 1, j). 

Cycle 2, Step 2. Repeat the second step, but apply it to A (n - 1, ji). 
Cycle 2, Step 3. Solve the (n - 1) -order system associated with A (n -1, i). 

Let x(n -1, j2) denote the first nonzero value of the solution set. Then 

x(n- j2) = (-1 )2 | A(n - 2, 2)| 
IjA(n - 1 ji)jI 

Here, A (n - 2, j2) denotes the (n -2) X (n - 2) matrix obtained by deleting 
the first row andj2 column of A(n -1, j). 

Cycle 3. Continue. 
The result of the algorithm may be stated in the following theorem. 
THEOREM. Let A = (aij) be a nonsingular n X n matrix, and let x(n - k, jik?) 

be the first nonzero member of the solution of the (n - k) -order system obtained in 
the third step of the kth cycle of the algorithm. Then 
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- n-1 -- 
A = ,X(n-k, jk+l) 

k=O 

where X(n - kJk+1) = (_1)ik+lx(n - k, jkl)- 
Proof. The third step in the kth cycle results in the value 

x(n - kyjk_ ) I()k+l| A(n - k, jk+l)| 
A(n-k,7jk)| 

The next-to-last cycle in the method yields 

x(2, ,-1 _ )j'-'+' IA(17-) x(2,j )8 - ________A(27 jn-2) | 

The last cycle yields 

1 
x(1,jil) = _ _ _ _ 

I A (1, jn-1)I 

If we now multiply the n solutions x(n- k, jk+l), we obtain 

8-lj (1)j1+l IA(n -1,ji)l (-1)j2+1 l A(n - 2, j2)| 
k=O x~-,y)=i A ]|A(n - 1, ji) I 

(- in 1+1 I A(17 jn-l)1 1 

A(2, jn-2) A(1, j-1) I 
(in_1)+ 2; ik 

_ (-1 ) _ k=1 

IA I 
or 

(-1 ) ~k=1 -X-1_- 

IA I= H1X] = [YiX(n - km+1) 

H x(n - k, jk+l) k=o 
k=o 

3. Numerical Efficiency and Comparison with Other Methods. In order to ob- 
tain some insight into the numerical economy of the algorithm, we summarize 
some well-known methods for the calculations of an n X n determinant and com- 
pare the required number of operations for each case with the required number of 
operations for the method discussed. 

3.1. Expansion in Elements and Expansion in Minors [1]. The well-known 
method of the expansion in elements requires (n - 1)n! multiplications and n! - 1 
additions, while the expansion-in-minors method requires Z71 n / (n-j) ! multi- 
plications. 

3.2. Chio's Method [1]. In this method, the following steps are prescribed: 
1. Divide an arbitrary row by one of its nonzero elements, e.g., aij . 
2. a. Multiply the ith row by a1j and subtract this row from the first row. 

b. M\iultiply the ith row by a2j and subtract this row from the second row. 
c. Etc. 
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3. Expand in minors according to the elements of the jth column. In order to 
complete the first step, we need to perform (n - 1) divisions, (n - 1)2 + 1 multi- 
plications, and n2 additions. The second step requires (n - 2) divisions, (n - 2)2 + 
1 multiplications, and (n- 1)2 additions, etc. In total, the following numbers of 
operations are required: 

Ev (j2 + 1)_ (n - 1)(2n - n + 1) multiplications 
j=1 6 

n-1 n(n-1) 
E j 2 divisions j==1 2 
n 
Z j2 = n (n + 1)(2n + 1) additions. 6 

3.3. Diagonalization Method [2]. Let f (X) be the characteristic equation of the 
matrix A: f(X) = A - XI I . The value of the determinant I A I is found from the 
product of the eigenvalues. The following method for the estimation of the eigen- 
values of a matrix is representative. 

3.4. Tridiagonal Method. In this method, the matrix A is first transformed into 
a tridiagonal form by means of a similarity transformation. The estimate for the 
number of multiplications required in this operation is (4/3)n3, and the number of 
additions required is (2/3)n3. The additional effort to obtain the eigenvalues of 
the tridiagonal form is negligible, and hence the number of multiplications to obtain 
the value of the determinant is (4/3)n3 + (n - 1) while the corresponding number 
of additions is (2/3)n3. 

3.5. Determinants by Means of Solution of Linear Equations. In our method 
we have to solve, successively, systems of linear equations of decreasing order. At 
the jth step, it is required to solve a system of j linear equations in j unknowns. If 
the number of multiplicative operations required for the particular auxiliary algo- 
rithm is J(j), the total number of these operations will be 

n 
J = J(j), 

j=1 

with similar expressions for divisions and additions. 
The following estimates of the dominant term in the number of operations for 

the different possible methods of solving systems of n linear equations in n un- 
knowns were obtained: 

Method Multiplications Additions 
1. Elimination n3/3 n3/3 
2. Seidel (one iteration) n2 it2 

3. Relaxation (one iteration) n2 n2 
4. Gradient method (one iteration) 2n2 2n2 
5. Conjugate gradient method, symmetric posi- 

tive definite matrix (one iteration) n2 n2 
6. Conjugate gradient method, general matrix 

(one iteration) 3n2 3n2 
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In the absence of definite information about the problem to be considered, it is 
difficult to obtain an estimate of the total number of iterations required for the 
last five methods. 

For our method, we obtain: 

Auxiliary Method Multiplications Additions 
I. Elimination n4/12 n4/12 

II. Seidel (one iteration) n3/3 n3/3 
III. Relaxation (one iteration) n3/3 n3/3 
IV. Gradient method (one iteration) 2n3/3 2n3/3 

V. Conjugate gradient method, symmetric 
positive definite matrix (one iteration) n3/3 n3/3 

VI. Conjugate gradient method, general ma- 
trix (one iteration) n3 n3 

3.6. Numerical Comparison. For a 10 X 10 determinant, we obtain the follow- 
ing estimates for the number of operations required for the methods discussed: 

Method Multiplications Additions 
1. Expansion in elements 3.26 X 107 3.63 X 106 
2. Expansion in minors 6.23 X 106 
3. Chio's method 330 330 
4. Tridiagonal method 1300 660 
5. Auxiliary method (by means of solution of 

linear equations) 
I 1000 1000 

II (one iteration) 330 330 
III (one iteration) 330 330 
IV (one iteration) 660 660 
V (one iteration) 330 330 

VI (one iteration) 1000 1000 
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Coefficients in Quadrature Formulas 

By A. H. Stroud 

The following result is well known (see, for example, Krylov [2], p. 104, or 
Szego [3], p. 48): 

THEOREM 1. If w(x) is nonnegative throughout the finite or infinite segment [a, b] 
and if the quadrature formula 

(1) f w(x)f(x) dx E Ai f(xi) 
iRb 
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