
APPROXIMATIONS TO KELVIN FUNCTIONS 295 

a = 1, 

b, c, d, > K 

and such that the conclusion of Theorem 1 is false. 
Proof. Let b = N, d = 2m - 2, c = 2-r(d!), where r is chosen to make c an odd 

integer. Clearly a is P,(b) only for s = 1. Now c is not Pi(d), provided d > 3, and 
not P2(d) since an odd integer cannot be the sum of two odd integers. Hence, we 
cannot find partitions of a, c satisfying the conclusions of Theorem 1. 

Suppose d is P, (c). Then 

d = di + d2 + *-+ d, 

where each di < d and (di, c) = 1. Now c is divisible by all odd integers < d; 
therefore di is a power of 2. I.e., 

(14) d = 2r1? + 2r2 + ... 2r8 

Since d = 2M - 2 there are at least ll - 1 summands in (14). I.e., if d = P,(c), 
then s > l - 1. But clearly if b is P8(a), then s _ N. If we now choose Ml - 1 > 
N + 1 and MLl, N large enough to ensure b, c, d > K, the conclusion of Theorem 2 
follows. 
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Approximations to Kelvin Functions 

By F. D. Burgoyne 

While preparing a digital computer program to examine the behavior of large- 
taper hub flanges, it was found necessary to use approximations to the Kelvin 
functions ber x, bei x, ker x, and kei x, and to their first derivatives. To obtain 
full machine accuracy, the approximations were required to be correct to nine sig- 
nificant figures. Several tabulations of these functions exist, but the only ones 
considered to be sufficiently accurate were those of Lowell [1] and Nosova [2]; 
however, limitations of internal memory in the computer used precluded the pos- 
sibility of storing such tables and interpolating. 

The functions actually required were Z(x) and Zi' (x) (I < i _ 4), where 

Zi(x) = ber x 

Z2(X) = -bei x 

Z3(X) = - - kei x 

Z4(x) = - - ker x; 
Rr 
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and the approximations below, which were obtained by Lanezos' economization 
procedure [3], enable these functions to be evaluated for all positive x, correct to at 
least nine significant figures. 

Z1(lOt) = C10 + c11t4 + + C18t32 (max. error 0 < t < 1, 27 X 10-13) 

F2 Z2(10t) = C20 + c21t4 + + c28t32 ( " " 2 X 10-13) 

F22R1(lOt) = C30 + C3Ct4 + + c38t ( " "C" 7 X 10-13) 

t4 R2( 10t) = C40 + c41t4 + + c48t32 ( " " 1 X 10-13) 

t3Z1'(lot) = di o + d 1t4 + + d,8t32 ( " " 1 X lo-',) 

t1Z2/(1Ot) = d20 + d21t4 + + -d28t32 ( " " 7 X I o-13) 

t R1'(lOt) = d30 + d31t4 + + d38t32 ( " " 25 X 10-13) 

t3R2 (10t) = d40 + d4lt4 
+ + d48t32 ( , 2 X 1o-13) 

S(10/t) = eio + elt + + el8t8 (max. error -1 < t < 1 5 X 1-0) 

T(10/t) = e20 + e21t + + e28t8 ( " " 5 X o-100) 

U(lOjt) = e30 + e3lt + + e38t8 ( " " " 5 X 10w10) 

V(10/t) = e40 + e4lt + + e48t8 ( " " " 5 X l0-"). 

TABLE 1 

C1i C2i CM C4i 

0 +0.9999999999974 -24.9999999999998 +24.9999999999993 +234.3750000000000 
1 -156.2499999995701 +434.0277777777479 -795.7175925924866 -1412.8508391203636 
2 +678.1684027663091 -678.1684027769807 + 1548.4845196730992 +1153.8281852814561 
3 -470.9502795889968 +240.2807549442574 -623.0136717405201 -255.0971742710479 
4 +93.8596692971726 -28.9690338786499 +81.9524771606200 +21.2123451660231 
5 -7.2422567278207 +1.4963342749742 -4.5187459132639 -0.8061529027876 
6 +0.2597773000700 -0.0384288282734 +0.1222087382192 +0.0159380149705 
7 -0.0048987125727 +0.0005444243175 -0.0018064777860 -0.0001797627986 
8 +0.0000516070465 -0.0000044913000 ?+0.0000154363047 +0.0000012161109 

TABLE 2 

i dli d~l i d3i j d4i 

0 -62.4999999999999 -4.9999999999993 +4.9999999999975 +93.7499999999998 
1 +542.5347222222147 +260.4166666665533 -477.4305555551536 -1130.2806712962694 
2 -565.1403356479486 -678.1684027747539 + 1548.4845196652035 +1384.5938223372452 
3 +150.1754718432278 +336.3930569023651 -872.2191403672455 -408.1554788292578 
4 -14.4845169498403 -52.1442608975905 +147.5144585913337 +42.4246903131088 
5 +0.6234726348243 +3.2919352108579 -9.9412403209725 -1.9347669229237 
6 -0.0137246036190 -0.0999147064932 +0.3177418434686 +0.0446263862145 
7 +0.0001701453451 +0.0016331100837 -0.0054188558408 -0.0005752042283 
8 -0.0000012506046 -0.0000152269884 +0.0000523294314 +0.0000043682053 
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TABLE 3 

iei I i e3i e4i 

0 + 1.0000000000 +0.0000000000 + 1.0000000000 +0.0000000000 
1 +0.0088388346 -0 0088388340 -0.0265165040 +0.0265165034 
2 +0.0000000007 -0.0007031241 -0.0000000008 +0.0011718740 
3 -0.0000517869 -0.0000518006 +0.0000725024 +0.0000725179 
4 -0.0000112207 -0.0000000072 +0.0000144255 +0.0000000079 
5 -0.0000016192 +0.0000016431 +0.0000019780 -0.0000020042 
6 +0.0000000135 +0.0000005929 -0.0000000147 -0.0000006992 
7 +0.0000001452 +0.0000000750 -0.0000001671 -0.0000000883 
8 +0.0000000492 -0.0000000243 -0.0000000563 +0.0000000269 

2 
Z3(x) = 2Z1(x)- - {IR(x) + Z2(x) log (2xe7'} 

7r 

2 
Z4(X) = 1Z2(X) + - {R2(x) + Z1(x) log (lxe8)} 

7r 

ZA'X) = 1ZA'X) - R i (x) ? Z2'(X) log (lxe') ? Z2(X)/X} 

Z4'(X) = Z2'(X) ? - R2x) ? Zi'(x) log ( xe7) ? Z1(x)/x} 
7r 

(Qy being Euler's constant 0.5772 ... 

Zl(x) = (27rx)> exp (x/2') 

*{S(x) cos (x/21 - 7r/8) - T(x) sin (x/2 - 7r/8)1 

Z2(X) - -(2rx)- exp (x./21) 

.{T(x) cos (x/2 2- 7r/8) + S (x) sin (x2 -7r/8 

Z1' (x) = (27rx)- exp (x121) 

*{U(x) cos (x121 + 7r/8) - V(x) sin (x12 + 7r/8)} 

Z2I(X) = -(2rx) exp (x/24) 

*IV(x) cos (x121 + r/8) + U (x) sin (xj2 + 7r/8)} 

Z3(x) =-(2/x) exp (-x121) 

.{T(-x) cos (x/12 + r/8) - S(-x) sin (xj21 + ?r/8)} 

Z4(X) = -(2/rx) exp (-x/2-) 

.tS(-x) cos (x/9- + 7/8) + T(-x) sin (x,/23 + ?/8) 

Z3'(X) = (2brx) exp (-xj2l) 

f V(-x) cos (x/2' - 7r/8) - U(-x) sin (x121 - 7r/8)1 
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Z4'(X) = (2/wrx) 2exp (-x/2 ) 

{ U(-x) cos (X/22 - 7r/8) + V(-x) sin (X/22 - ir/8)}. 

The constants cij, dij , and eij (1 < i < 4, 0 < j ? 8) are given in Tables tl to 3. 
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Quadrature Formulas over Infinite Intervals in 
Terms of Differences 

By F. D. Burgoyne 

This paper describes quadrature formulas which may be used instead of Gauss- 
Laguerre or Gauss-Hermite formulas and in which differences are employed. The 
relative merits of each type of formula are considered and simple examples are 
given. While the idea behind them is certainly not new, the formulas themselves 
do not appear to have been previously published. 

An integral of the type f0 e xf(x) dx if often evaluated numerically by means 
of a Gauss-Lgguerre quadrature formula. Thus we have 

0 ~~~~n 
(1) 10 eCxf(x) dx = E Hnif(a7i) + E, 

i=O 

where the weights Hn* and the abscissas an* have been extensively tabulated (see, 
for example, [1]), and E represents an error term. Similarly, an integral of the 
type f -oo e-x2f(x) dx can be evaluated numerically by a Gauss-Hermite quadrature 
formula, and we have 

oo n 
(2) j eXf(x) dx = : Knif(bni) + F, 

oo i=o 

where the Kni and the bni have also been the subject of several tabulations (one of 
the most comprehensive being [2]), and F is the error term. The advantage of such 
formulas is that for a given value of n they attain the maximum possible degree of 
precision, i.e. 2n + 1, and on this account they are usually very accurate. Further, 
if an automatic computer is being used, it may be convenient not to have to form 
differences. 

Unfortunately they also suffer from several drawbacks. Perhaps the most 
serious is that having arrived at an estimate for the value of an integral using a 
certain value of n, if we then decide to use a different value of n we have to repeat 
the entire calculation with new weights and abscissas. Although this is undesirable 
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