
298 F. D. BURGOYNE 

Z4'(X) = (2/wrx) 2exp (-x/2 ) 

{ U(-x) cos (X/22 - 7r/8) + V(-x) sin (X/22 - ir/8)}. 

The constants cij, dij , and eij (1 < i < 4, 0 < j ? 8) are given in Tables tl to 3. 
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Quadrature Formulas over Infinite Intervals in 
Terms of Differences 

By F. D. Burgoyne 

This paper describes quadrature formulas which may be used instead of Gauss- 
Laguerre or Gauss-Hermite formulas and in which differences are employed. The 
relative merits of each type of formula are considered and simple examples are 
given. While the idea behind them is certainly not new, the formulas themselves 
do not appear to have been previously published. 

An integral of the type f0 e xf(x) dx if often evaluated numerically by means 
of a Gauss-Lgguerre quadrature formula. Thus we have 

0 ~~~~n 
(1) 10 eCxf(x) dx = E Hnif(a7i) + E, 

i=O 

where the weights Hn* and the abscissas an* have been extensively tabulated (see, 
for example, [1]), and E represents an error term. Similarly, an integral of the 
type f -oo e-x2f(x) dx can be evaluated numerically by a Gauss-Hermite quadrature 
formula, and we have 

oo n 
(2) j eXf(x) dx = : Knif(bni) + F, 

oo i=o 

where the Kni and the bni have also been the subject of several tabulations (one of 
the most comprehensive being [2]), and F is the error term. The advantage of such 
formulas is that for a given value of n they attain the maximum possible degree of 
precision, i.e. 2n + 1, and on this account they are usually very accurate. Further, 
if an automatic computer is being used, it may be convenient not to have to form 
differences. 

Unfortunately they also suffer from several drawbacks. Perhaps the most 
serious is that having arrived at an estimate for the value of an integral using a 
certain value of n, if we then decide to use a different value of n we have to repeat 
the entire calculation with new weights and abscissas. Although this is undesirable 
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in hand computation, it is even more so if an automatic computer is being used: 
the program will have to be supplied with several sets of weights and abscissas. 
From the point of view of the desk machine user another drawback is that both 
weights and abscissas are usually awkward irrational numbers. Moreover, if f(x) 
is only known at a set of equidistant abscissas the use of a Gauss-Laguerre or a 
Gauss-Hermite formula will involve us in interpolation to find f(an?) or f(bei). 
The quadrature formulas to be described do not suffer from these defects. 

Let w be the interval at which f(x) is tabulated. We shall use the following 
notation for factorials: 

x?)=1 x~i = ( x~-1) ... {x - (i -1)} i =1, 2, *... 

X{1 X x(2i-11 = (x 2- I) X2 _(-1)21 i =2, 3, .. -, 

x[0]=1 x2i] = 2(x2- 1) ... fX2- (i )2} =12,*- 

X(i) = x(i)/i! etc. 

In what follows f(x) will be assumed to be differentiable as many times as is re- 
quired. 

From Newton's Forward Difference interpolation formula we obtain 
G n 

(3) | xe-f(x) dx = hiA'f(O) + e, 
o ~~~~i=O 

where 

h= e (X/w)(i) dx = w f ex(i) dx 

and 

(4) e = wn+1 ex(x/w)(n+l)f (n+l) ( ) dx, 

t being a positive number depending on n, w, x, f(x). We see that (3) represents a 
quadrature formula to replace (1), in which the abscissas are 0, w, - * *, mw. Each 
term in the summation on the right hand side of (3) represents a correction to the 
previous estimate and involves us in the use of one new abscissa. It will thus be 
evident from the magnitude of this correction at what stage we have considered 
sufficient terms to estimate the value of an integral to a given accuracy. If, as some- 
times happens, the resulting series is slowly convergent while the terms alternate 
in sign, we may conveniently sum the series by Euler's transformation or a similar 
device. Whereas the Gauss-Laguerre ordinates f(ani) cannot be checked for numeri- 
cal slips by straight differencing, the formation of the difference table for use with 
(3) will automatically provide a check that we have evaluated f(iw) correctly. 
The degree of precision of (3) is plainly n. 

Perhaps the easiest way to evaluate hi is from the recurrence relation 

(5) i= - (-1ilhi-/j i = 1, 2, ... * 
w j=1 
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starting with ho = 1. This relation may be derived as follows: 

= 
W 

f e-Wx) dx = 1 
J ewxDx(i) } dx (by partial integration) 

1 , w 
f ewx~ix~- - ji(i- 1)x(i-2)/2 + + (-1)'-i!/i} dx 

i~ 
= - Z (-_1 )j-1ht-/j. W j 

We may thus tabulate the hi for any given interval w, but if an automatic com- 
puter is being used it will probably be simpler to generate them in the program. 

Using the methods of [3] it is possible to derive from (4) an expression for e, the 
leading term of which is hn+Iw'+lf(n+l) (h), t' being a positive number depending 
on n, w, f(x). The details are omitted here since the result is of little practical im- 
portance, although it does enable a comparison to be made between e and the error 
term of a different quadrature formula having the same degree of precision. Another 
fact which emerges is that e is largely independent of w, and this is borne out by 
numerical examples. 

To obtain a similar quadrature formula to replace (2) we consider Stirling's 
interpolation formula, and we find that 

0o n 
(6) eX f(x) dx E ki k2if(O) + f, 

oo i=o 

where 
00 0 

ki= ] e(x/wX2i1 dx 2w j eWX x[2i] dx 

and 
Co 

f w2 f eX* (X/W)[2n?2 f(2n+2) (2) dx = k ?w21C+if(2n+2)( I) ? 
00 

7n, 7 ' being numbers depending on n, w, x, f (x) and n, w, f(x) respectively. Corre- 
sponding to (5) we have the relation 

ki = (ki-1 - k2/6 + ki-3/3O - )/4iw2 i = 1, 2, *, 

which, starting with ko =r 7, may be used for the evaluation of ki. The proof is 
similar to that of (5). Since the coefficients of kij are awkward numbers, to evalu- 
ate ki it will probably be easier to express x[2i] in terms of powers of x2 (see [4]) 
and to use the result that 

00 
W 2X j 1t j 12 2 2w f eW2 2x23dx= (j- /)2/ 23- (2j-1) w 

00 

If desired, a similar procedure may be used to evaluate hi, in which case we use the 
result that 

w f eWXx3 dx - j~ wj. 
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Although the ki are more troublesome to calculate than the hi, they will be found, 
unlike the latter, to diminish quite rapidly. 

We shall now consider two simple examples to illustrate the use of (3) and (6) 
respectively. Firstly, suppose it is required to evaluate 

go -x 

100-+ 2x 
d 

to six decimal places, using w = The estimates given by (3) for n = 0, 1, 2, 3 
are respectively 0.01000000, 0.00980198, 0.00980780, 0.00980757. We thus infer 
that to the accuracy required, I = 0.009808: this is in full agreement with the exact 
value. If instead of using (3) we had used (1), and followed a similar procedure, 
three separate calculations would have been required to obtain I to this accuracy, 
as the estimates given by (1) for n = 0, 1, 2 are respectively 0.00980392, 0.00980755, 
0.00980756. To illustrate the use of (6) consider the problem of evaluating, as 
accurately as possible, the integral 

J L e-xfJo(x) dx, 
00 

where Jo(x) is the Bessel function of the first kind and order zero, given only that 
J0(O) = 1, Jo(?1) = 0.765198, Jo(i2) = 0.223891. From (6) we obtain 
J = 1.570389 with n = 2. This compares with the true value of J = 1.570301, to 
six decimal places, as given in [5]. With the values of Jo(x) given here, there is 
clearly no point in attempting to evaluate J by Gauss-Hermite quadrature. 
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