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1. Introduction. In applying finite difference techniques to the solution of 
partial differential equations, much concern is usually devoted to the stability 
properties of the resulting difference equations. The presence or lack of stability 
ordinarily can be determined by analysis and, if the equations are linear, the out- 
come determines their behavior for all time. If linear equations with constant 
coefficients are not stable, then any fluctuations present in the system will experience 
continuous growth in amplitude; but when non-linear equations are unstable, the 
rate of growth of fluctuations is subject to change. The non-linear terms may be of 
such a form as to counteract the instability and establish an upper limit to the 
amplitude of these fluctuations. When this is the case an equilibrium amplitude is 
eventually attained and henceforth only minor fluctuations about this level occur. 
The purpose of this paper is to study the mechanics by which this damping force 
is exerted, by investigating some of the phenomena observed when a certain coupled 
set of non-linear partial differential equations is differenced and run for thousands 
of cycles of calculation on the computer. 

The interest in such a study is more than academic, for if it can be shown, for a 
particular set of difference equations, that instability fluctuations are bounded to a 
level which is small compared to the features of interest in a problem, then cal- 
culation with the unstable equations can be confidently pursued. Moreover, if one 
can obtain analytical expressions for the oscillation amplitudes in terms of the 
parameters of the system, one may then optimize those parameters in such a 
way as to minimize the effect of the oscillations. 

Indeed, this study was motivated by the rather paradoxical success enjoyed by 
the Particle-iii-Cell difference method [1] in representing high velocity fluid flow. In 
spite of the fact that the difference equations are unconditionally unstable, this 
success was achieved, in many problems, without recourse to the use of artificial 
dissipative terms. This paper discusses the underlying cause of the phenomenon 
with a simplified version of the Particle-in-Cell equations as a model. Greater 
elaboration, together with a discussion of application to the above-mentioned 
computing method, may be obtained from a somewhat more intensive report [2]. 

All calculations presented here were performed on an IBM Electronic Data 
Processing M\'fachine, Type 704. 

2. The Equations. The discussion will be concerned with the effect on the 
stability properties of the difference form of the one-dimensional wave equation 
caused by the addition of a single non-linear term. We write the wave equation in 
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the coupled form 

Au av 

At Ax 
(2.1) 

aV 2AU 
At -P Ax' 

where u and v are related respectively to velocity and temperature, x and t are space 
and time coordinates and p is a constant. The term to be added to these equations 
is one which arises naturally in the Particle-in-Cell finite difference method for 
fluid dynamics. The complete equations are 

Au av a / au\ 

at = - +f bx- Vua 
(2.2) 

aV 2 AU 
At PAx' 

in which f is a dimensionless constant of approximately unit magnitude and Ax 
is the finite difference space increment. They represent a simplified version of the 
equations which are solved by the Particle-in-Cell method. Notice that the added 
term is diffusive and non-linear; our principle object is to show its effect on the 
oscillations of the finite difference equations and, in particular, to show the manner 
in which these oscillations are bounded to small but finite amplitude. 

Equations (2.2) are expressed in difference form as 

un+1 _un (n n f[I -J Uj_ = --1 (vY?i - vj71) + [ |u7i + u +j (u7?i - U) 

at 26x '+26x 

(2.3) - Ujn + Un (Ujn - un71)] 

n+1 n 2 
V - VJ P (U n+l U n n+1 U 

at = -45x j+1 + j+1-uj_1 -1). 

The choice of time centering employed in this last equation is required in the original 
method to insure energy conservation. Its retention simplifies the study of these 
equations to some extent. 

The finite difference system, over which these equations are defined, is composed 
of N cells of equal length Ax. The quantities u and v are defined at the celnter of 
each cell and the configuration is advanced in time, according to equations (2.3), 
by a sequence of time cycles, each of duration bt. The form of the difference equa- 
tions (2.3) requires the consideration of two additional cells, j = 0 and ] = N + 1, 
outside the system and the values of u and v at the center of these cells are defined 
by the boundary conditions on the system. The boundary condition on velocity 
requires that u vanish at each end of the system and hence we require that uo =-l 
and UN?+1 = -UN. 

A stability analysis of equations (2.3) indicates that they are unconditionally 
unstable, that is, any infinitesimal perturbation of the steady state coniditions, 
'UJ = 0, vj = constant, gives rise to growing fluctuations. As these grow in amplitude, 
however, the non-linear term becomes important and establishes an upper bound 



348 BART J. DALY 

(which depends upon the parameters of the system). Before analyzing the process 
we show in the next section some of the actual computer results which illustrate 
the features of interest. 

3. Computer Experiments. A series of problems were run on the computer in 
order to test the effect of the various parameters on the final equilibrium conditions. 
An initial perturbation was supplied as a small velocity in each cell, and the result- 
ing fluctuations were observed through their effect on the kinetic energy histories. 
In addition, the velocity profiles were analyzed in detail through Fourier decom- 
position. 

Figure 1 shows the kinetic energy history for a series of machine runs in which the 
size of the system varies from 6 to 80 cells, all other parameters being fixed at the 
following values: bt = 0.25, Ax = 1.0, f = 1.0 and p2 = 0.4. Boundary conditions 
specify u = 0 at the ends of the region, and it can be shown that an exact solution 

of equation (2.2) at t = oo is u = 0 everywhere. Thus the kinetic energy, M 
j Uj2, 

is a good measure of the non-vanishing fluctuation. Since the frequency of oscilla- 
tions of the kinetic energy is too high to plot on the scale of Fig. 1, the curves trace 
the loci of the maximum and minimum points. The average midpoint between 
these lines at late times is taken as the equilibrium value. 

Notice, in this figure, that fluctuations grow rapidly at first (as in a linear prob- 
lem) but are eventually bounded to equilibrium. The amount of overshoot which 
precedes equilibrium, as well as the mean equilibrium amplitude, generally increase 

with the size of the system, although the 6 cell system is anomalous in both respects. 
The machine results show that the course of any one calculation usually can be 

divided into three phases. In the first, or linear phase, the fluctuations grow rapidly 
in time. This phase is terminated by the achievement, in the mean, of velocity 

fluctuations large enough to give appreciable non-linear dissipation. In the second 

phase, there is a first order balance between the instability and the dissipation, 

but also there is a higher order imbalance leading to slow transition to final steady 

state (the third phase). The origin of these phases will be discussed in more detail 

in the following sections. Most of the calculations were not run long enough to show 

the Phase III behavior. 
Other experiments were performed in which the time interval and the coefficient 

of the non-linear term were varied. It was found that the final equilibrium kinetic 

energy was proportional to (Ot/f)2, which behavior is explained in Section 4. 

The initial perturbation in these problems was such that only the symmetric 
(odd) Fourier modes of oscillation were originally present in the system. Further- 

more the rate of growth of the even modes was observed to be very small compared 
to that of the odd modes, so that the nonsymmetric modes never contributed 

significantly to the energy of the system. A Fourier analysis of velocity profiles 

showed that, among the odd modes at late times, one mode of oscillation usually was 

dominant. When the number of cells in the system was small, the lowest frequency 
mode was predominant, exceeding the other modes in amplitude by several orders 
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FIG. 1. Kinetic energy histories for various systems. The lines trace the loci of maximnum 
and minimum values of kinetic energy. 

of magnitude; but in larger systems one of the higher frequency modes generally 
dominated. In these latter cases the amplitude of the dominant mode was usually 
two or three times that of the next largest mode. Furthermore, although the wave 
number of the dominant mode differed from problem to problem, it was found that 
its late time amplitude was always nearly the same. These features are illustrated 
in Table 1. 

4. The Mechanics of Dissipation. In the analysis of the problem of equilibrium 
balance, it will turn out to be sufficiently accurate to consider an approximation 
to the full equations. We therefore expan-d equations (2.3) in Taylor series about 
the center of the Jth cell and about time n6t. Neglecting terms higher than the first 
in 6x and 5t, we obtain 
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au +1 a2 t OV+f a ( 9u~ 
Ot 2 dt2 Ox O9x -axu 

(4.1) 
dv _ 2 dU 
at axz 

where, for convenience, subscripts and superscripts have been dropped 
Now, to zero order 

a2I 2 a 

(4.2) u = p2 u 

and with this substitution equations (4.1) become 

a~~~~xu 1va( X 26t)aul 
dt a Odox O a ] 

(4.3) 
dv _ 2 dU 

at P ox 

Notice that the diffusive effect in equations (4.3) depends upon the sign of the 
quantity 

_(U) - f6X Iu- p25t. 

When o- is positive the system is smoothed; when T- is negative, fluctuation am- 
plitudes increase. Hence, in this approximation, the mean amplitude of fluctuation 
occurs at o- = 0, corresponding to 

(4.4) uI = 2fx 

If we assume a probability distribution P(u), of velocities about this mean, the 
corresponding mean kinetic energy for a system of N cells of mass m each is given 
by 

KE= Nm f P(u) U2du. 

For a normal distribution, P(u) .538-ye-9l"2u2 - fax ; this gives 
p26 

Nm Fp 6t1 
(4.5) KE = .275 Nm = .275Nm[ y2 Lf6xi 

In contrast, for a sharp distribution, in which P(u) = 6(u - ?), we get 

(4.6) KE = -Nm [pt] = .125 Nm P t 

A comparison of these predictions with computer results for typical values of the 
parameters is shown in Figure 2. The circles in the figure indicate observed values, 
while the upper line is a plot of relation (4.5), referring to normal distribution of 
velocities about the mean, and the lowest line shows the kinetic energy, equation 
(4.6), which would be attained if all cells had the mean velocity. It is seen that the 
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FIG. 2. A comparison of observed values of mean kinetic energy near final equilibrium with 
three predictions arrived at in the text. 

actual distribution lies between these extremes. The prediction requires further 
analysis, the results of which are shown by the middle line in the figure and are 
derived in Section 5. 

5. Modal Exchange of Energy. Thus far, the investigation, while shedding some 
light on the mechanics of the damping process and providing an estimate of the 
equilibrium amplitude, has told nothing about the normal modes of oscillation in 
the system or of the energy sharing between these modes. For this purpose we 
need a more detailed study of the difference equations. 

Consider again equations (4.1). Following Kryloff and Bogoliuboff [3], we will 
assume that the solution of these first order equations does not differ much from 
the solution of the corresponding zero order equations (equations (2.1)), 
and will account for the difference by allowing the amplitude and phase of the 
zero order solution to vary with time. An appropriate solutioni of the zero order 
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equations is 

u = A sin kx sin(cot + so) 
(5.1) 

v = pA cos kx cos(cot + sP), 

where co = pk. Application of the boundary conditions that u shall vanish at each 
end of the system, determines the unique values which k may assume, 

n7r k = L n n= 1, 2, 

where L N6x. Thus the complete solution of the zero order equations can be 
written 

00 

(5.) An sin 7r sinQn 
n=1 

(5.2) c 
v = p ZA cos An cosQ Qn 

n=l L 

where Qn n-rPt + (Pn and the An and (Pn are constants determined by the initial L 
conditions. 

Now, considering An and (Pn as functions of time, we have 

t= Z [sin j (An sin Qn + An cos Qn + An On cos Qn 

so that, to impose the zero order solution, it is required that 

(5.3) An sin Qn + AMnp cos Qn = 0. 

Substitution of solution (5.2), subject to condition (5.3), into equations (4.1) gives 

[n7rp6t ( An An L s sin nrx] 

\ 
L 

COS Qn L in / 
L 

- f6x d An sin sin Qn Z Am m cos sin Qm ox n L mLmL Lsn 

plus an identity equation. Thus 

n7rpbt [c - - An nL sin Qn] 

L &7r lirx F Mr mirx .b 
= f6x sin Al sin L sin Qi L Lcos m1 sin Qm dx. 

L Ox ~L m KLmy siL mILX 

Integration of the right-hand side by parts and simplification gives an expression 
for the rate of growth of the amplitudes, 

An = An 2-LP sin 2Qn -4f6x cos QnI cos ' ZA, sin - sin Qi 

(5.4) 
Lpco L 

LL LrMr sin Qm dx. 
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Consider first the case f = 0. Combining equations (5.3) and (5.4) we obtain 

son -w. sin (Wnt + son) 

which on integration gives 

Pn= -nt + tanl( oWnt + Cn ), 

where C,, is an arbitrary constant. With this, then 

An = On An [1 n t + Cn)2 

Thus 

(5.5) An = Kn\/1 + (wn t + Cn)2, 

where Kn is a second arbitrary constant. 
This shows that, with f = 0, we can expect a growth in amplitude for each com- 

ponent, becoming linear in time for large times. This solution is also appropriate 
for f $ 0 when the amplitudes are small enough to neglect the non-linear term in 
equation (5.4). But, as the amplitudes grow, this non-linear term will eventually 
check the instability, bringing the system to equilibrium. 

Consider now the case f $ 0. By neglecting cross product terms (whose contri- 
bution is small for the significant lower frequency modes), we can write equation 
(5.4) in a simpler form which illustrates the manner in which fluctuations are 
damped, 

(5.4') A, = An x,,sinQn cos Qn 14fi I u I Co2, rXd dx} 
I~Lp5t csL J 

The amplitudes increase in magnitude until the velocity becomes large enough to 
make the bracket term small. Thus, the mean value of An approaches zero to first 
order and An achieves its maximum value. The order in which the modes are 
maximized depends upon the configuration of the velocity profile and of this we can 
say very little at first. But the velocity magnitude must continue its growth as 
long as there is a single mode for which An > 0; thus the bracket terms become 
negative for many modes and these oscillations decay. 

Herein, perhaps, lies the explanation of the origin of the dominant mode oscil- 
lation, which was discussed in Section 3. For consider the system at the time when 
there is but a single mode which remains to be maximized. The velocity is increasing 
in magnitude but all other frequency oscillations are declining and hence the ve- 
locity profile is approaching closer and closer to the configuration of the growing 
oscillation. It can be shown that the integral in equation (5.4') is least when the 

velocity is composed entirely of L frequency oscillations; therefore the growing 

resemblance of the velocity to this frequency only serves to prolong the growth of 
this final mode and the decay of all other modes. Thus the end of the first phase of 
the process, which corresponds to the time of maximum velocity magnitude, finds 
a major portion of the energy of the system concentrated into a single mode; this 
concentration increases throughout Phase II. 

To include the cross product terms and perform the analysis in general would be 
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difficult; however, when a particular mode, say number a, dominates the system to 
the extent that 

(5.6) Al sin - sin Q - A<,, sin sin Q | 

then considerable simplification is possible. Making use of the "dominant-mode" 
assumption, which will be done for the rest of this paper, equation (5.4) can be 
written 

An= An cW sinQn cos Qn -Lf COS Qn Aa | sin Qa | 

(5.7) L*mt 
X LX sin L cosL cos COS dx, 

where 

'Pm - Am sin Qm. 

Now 

rrcos i (m + n)1r cosi ( n 
.oarx M7rX nwrx 1 sa at 

lLsinL cos cos dx =-i_ _ 4 + (m_n2 JoI L I r i' 1 _( + n) 2 n (m 2& 

and 

a . /)n i \ a) for i n = k, an integer, 
cos i(=_ a 

i=1 a / aO, otherwise. 

Now, in the machine calculations, it was observed that the even modes never 
contributed significantly to the fluctuation energy. This is reasonable to expect, 
since the equations with f = 0 conserve symmetry and initially only odd modes 
were present; by the time even modes could couple in significantly, equilibrium of 
Phase II type had been achieved and further even-mode growth was slowed to 
second order. Thus, with only odd modes considered, the sum in equation (5.7) can 
be written 

r . arx nrx nrx L [ _12-nl _p2a+n 114__nI 
Sn- f7tw 1 | sin L ! cos cos dx 

= - L'Pn - - ' 

_44+n l+ 2qa-n I+ '2qa+n 
1 5 1 _ q 42 1 - 4q2 _. 

Now, when n = a, the dominant mode, only the first two terms in the sum con- 
tribute significantly to Sn. Thus 

Sna- *-L ' aA=,n, sin Qan. 
3 1r 3 

When n $ a, we will assume that Sn can be limited to its first term. This assumption 
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will be justified presently, at least for the significalnt lower-number modes, i.e., for 
n < 2a. With this assumption the system of equations (5.7) can be written 

Aa = Aa, si Qa cOs Qa f1 2 x 
A, I sin Q4fI} 

(5.8) 
1 ' p5 

An= An wOn sin Qcos Qj 1 4l 
x 

A,, I sin Q,a n -- a. 

Since these equations have been derived on the basis of the dominant mode 
assumption, which became effective at the close of Phase I of the process, they are 
appropriate for a description of quasi-equilibrium and equilibrium conditions, that 
is, Phases II and III. Without solving them we may notice their late-time properties. 
The rate of change of all the modes depends upon the magnitude of A, , which will 
continue to increase, on the average, as long as the bracket term in the first equation 
is positive. Before this growth stops, however, the bracket term in the equation for 
A n x n 7 a, will have become negative. Thus the final, Phase III, equilibrium 
corresponds to 

3 7rp25t __2p2_ t 

(5.9) Aa 2 4f5x (l sin Qa 1) 16fxv 

An 0) Onn 7 a) 

where ( ) signifies an average over time. 
Phase II is that period, following the initial amplitude growth, when the system 

is approaching this single frequency oscillation. Its duration varies considerably 
from problem to problem and is, as shall be demonstrated, largely dependent upon 
the number of the dominant mode. Furthermore, the number of the dominant mode 
increases with system size, so that ultimately the rate of energy concentration de- 
pelnds upon the system size. This fact is very much in evidence in the kinetic enlergy 
profiles of Figure 1. The 6 and 12 cell systems, for which Fourier decompositions 
ilndicate the lowest frequency mode is dominant, pass rapidly from initial damping 
to the Phase III equilibrium condition of a uniform amplitude, sinlgle frequency 
oscillation. But the larger systems, which are dominated by higher frequency modes, 
exhibit profiles indicative of composite frequency oscillations. Furthermore, the 
amplitude of these kinetic energy curves increases with time indicating a slow 
growth in the magnitude of the dominant mode at the expense of the secondary 
modes. 

The variation in the calculation time required to attain a true dominiant mode 
distribution of energy and the dependence of this calculation time upon system size 
are apparent from Table 1, which shows the amplitude of various modes at the 
completion of the machine runs. This completion time is quite arbitrary in that, 
although all the problems have passed the stage of initial amplitude growth, there 
is a marked contrast in the amount of energy concentration which has taken place. 
The 12 cell system is the only one in which essentially all the energy of the system 
has been concentrated in one mode. The other problems, one of which was run 
considerably longer than the 12 cell problem, all contain secondary modes of sig- 
nificant amplitude. 

We have not been able to predict a priori which mode will dominate nor to 
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TABLE 1 

Amplitude of significant modes at completion of nachine runs for several problems 

Number of Cells in System 
(Duration of Problem in Time Cycles) 

M ode No. __ _ _ _---_ _ _ _ 

12 30 40 65 80 
(9200) (9150) (13,700) (9700) (9900) 

1 .140 _ .015 - 

3 (.002) .023 .014 .006 
5 .000 .073 .051 .013 
7 .000 .107 .121 .022 
9 (.001) .024 .011 .032 .007 

11 (.001) (.009) .001 .048 .028 
13 (.002) .004 .108 .109 
15 (.004) .001 .033 .032 
17 (.006) (.002) .015 .033 
19 (.010) (.002) .032 .036 
21 (.011) (.003) (.003) (.009) 
23 (.007) (.001) (.002) (.007) 
25 (.005) (.001) (.002) (.006) 
27 (.003) (.002) (.002) 
29 (.002) .000 (.003) 

The amplitudes shown in parenthesis are averages of highly oscillating values. 

explain why the number of the dominant mode increases with the number of cells 
in the system; but we can show qualitatively why the secondary mode amplitudes 
recede more slowly when the dominant mode wave number increases. For this 
purpose it seems appropriate to make use of equations (5.8), even though the 
system has not yet reached a true dominant mode condition. They are considered 
applicable because the amplitude of the dominant mode is so much larger than the 
secondary mode amplitudes that condition (5.6) should be valid. Simplifying 
equations (5.8) we write 

Aa = AaWa(1 - 2gAa) 

n= Ancon( 1 -gAa)X 
where 

w 4fbx6I sinQal) 

97rp'bt 

Solving the first equation, we obtain 

Rewat 
Aa = 

1 + 2gRewat 

where R is an arbitrary constant. Substituting this expression for A,, into the second 
equations yields a solution for An, 

eCoat nl/a 

(5.10) An = Kn _(1 + !kReOat)31/2 

where Kn is another arbitrary constant. 
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Notice that as t -oo, 

3 
Aag A,2- 

so that the final equilibrium solution is the same as before. But equation (5.10) 
indicates why this final solution is delayed as the value of a increases. When a =1, 

as in the 12 cell problem, the smallest possible value of the exponent is three sa 
that all the secondary modes lose amplitude rapidly; but for larger values of a there 
exist modes for which this exponent is approximately one, so that the decay of these 
amplitude curves is much more gradual. 

Likewise this equation demonstrates why, for a fixed value of a, the high fre- 
quency vibrations are damped much more rapidly than the lower frequency ones, 
substantiating our assumption that the high frequency contributions to S,, could be 
neglected when n < 2a. This rapid decay of the high frequency modes is apparent 
in Table 2, which, for a system of 40 cells, compares the amplitude of significant 
modes at an earlier Phase II time with those at problem completion time as listed 
in Table 1. Notice also, in Table 2, the growth of the dominant mode amplitude. 

Now as the amplitude of these high frequency vibrations begins to change 
rapidly, their phase angles once again assume a strong time dependency as a result 
of the condition expressed in equation (5.3). These complications are made apparent 
in the computer results by rather erratic variations in the amplitude and period of 
these high frequency oscillations at late times. The irregular character of these 
oscillations is indicated in Table 1 by parentheses around their average amplitude 
value. 

On the other hand, in the larger system, the lower frequency oscillations are 
extremely uniform in both amplitude and period at the time that these computer 
runs were completed. This would indicate that the dominant mode amplitude has 
not as yet changed much from the value which would make An = 0 in Eq. (5.8), i.e., 

ir2p2t 
(5.11) A 8f&v 

And, indeed, the dominant mode amplitudes in Table 1 do not vary much from this 
value; the greatest variation is 13%. 

Since this rather slow rate of growth of the dominant mode is somewhat at 
odds with what one would predict from equations (5.8), it is perhaps worthy of 

TABLE 2 
Amplitude of Significant Modes at Early and Later Equilibrium Times for 

a System of 40 Cells 

Time Mode Number 

1 3 5 7 9 11 13 

7,300 .015 .016 .053 .093 .061 .022 .017 
13,700 .015 .014 .051 .121 .011 .001 .004 
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son-e additional comment. Notice in these equations that the expression for Aa is a 
product of two factors, 

Aawa sinU Qa cos Qa 

and 

{1 -3 iAa sin Qa l} 

The bracket term is positive for the Phase II dominant mode amplitudes given by 
equation (5.11) and hence any slowing down of the rate of growth must result 
from the first term. This could happen if the first term was approaching an oscil- 
lating function of time, in which case the product of the two terms would oscillate 
and Aa, would experience alternating periods of growth and decay. As this first ternm 
becomes a sinusoidal function, Aa vaniishes on the average and the system reaches 
final equilibrium. 

There is some reason to believe that the final equilibrium state, which these 
machine problems are approaching, is characterized more by the sinusoidal nature 
of this first term than by the vanishing of the bracket term. Some evidence for this 
is given by the amplitude of the dominant mode of the 12 cell system at problem 
completion time. Both the extreme concentration of energy into a single mode, 
evident in Table 1, and the uniform kinetic energy amplitude of Figure 1 indicate 
that this 12 cell problem is at least very close to a final equilibrium state. And yet 
the final dominant mode amplitude for this problem is .140, which is only 76% of 
the value which would make the bracket term in equation (5.8) vanish. Hence the 
constancy of the dominant mode amplitude must result from the vanishing on the 
average of the first term. 

This matter will be referred to again in the discussion of final kinetic energy 
predictions in Section 6. 

6. Predictions. Consider, now, an estimate of the total kinetic energy of the 
system on the basis of this Phase II dominant mode amplitude (equation (5.11)). 
The kinetic energy in the jth cell is given by 

KEj = 2 L Am sin ll sin Qm A. sin l- sin Qn 2 mn N N 

so that, with m = 1 

Z 
n2 i 2n7rJ 

(KEj) = A sin N 

and 

(KE) = Z (KEj) = N L An2. 
.? ~8 n 

Assuming that the dominant mode contains essentially all of the energy in the 
system, this gives 

(6.1) (KE) = N 
Fw2paPt7 8 Lsfbx 



STABILITY PROPERTIES OF PARTIAL DIFFERENCE EQUATIONS 359 

This prediction is shown as the middle line in Figure 2. The agreement is consider- 
ably better (at this stage) than that obtained in the first analysis; any discrepancy 
is a measure of the actual strength of the neglected secondary modes. 

But from this intermediate stage of equilibrium we expect the kinetic energy 
profile to rise rather slowly as the dominant mode amplitude approaches its asymp- 
totic value given by equation (5.9). Since the asymptotic dominant mode amplitude 
is 3 the value used in the kinetic energy determination above, we might expect that 
the kinetic energy of the system would eventually attain a level 9 higher than this 
intermediate plane. However we expect this growth will be tempered by the fact 
that, as Aa becomes small, the first factor in the expression for Aa will become 
sinusoidal so that Aa will become an oscillating function of time in equation (5.8). 
The final kinetic energy level should then lie at some intermediate plateau, probably 
not far removed from the prediction made by the first analysis. Unfortunately, a 
prohibitive amount of machine time would be required to enable one of these large 
systems to reach this ultimate goal. 

It is also possible to obtain a fairly accurate estimate of the frequency of the 
dominant mode at equilibrium. When the system has attained a true dominant 
mode energy distribution, indicative of Phase III equilibrium, and the dominant 
mode is approaching its limiting value, then its frequency should be approaching 
the natural frequency, since spa- 0 with Aa, according to equation (5.3). In the 
12 cell system, which is a case of this type, the frequency of the first mode differs 
by less than two per cent from its natural frequency. 

But for a system which has only attained the intermediate stage of equilibrium, 
a prediction is somewhat more difficult to obtain. The relationship between the 
amplitude and phase of the dominant mode in such a system is described by 
equations (5.8) and (5.3), 

A = 1A sin 2Q{&Ia, - ZAa I sin QaI, I Z aft Acr 
~~~~~~~~~~3Lpbt 

Aa sin Qa + Aa(Qa - Wa) cos Qa= 0. 

Since the experimental evidence indicates that the amplitude and period of the 
dominant mode vary quite slowly at this stage, let us set 

A. K + 

Qa = Qt + E 

in these equations, where r and E are higher order correction terms. Neglecting 
higher order terms, this gives 

2= 2K sin 2Q2t(w. - ZK I sin Qt l) 

? sin Qt + K(Q - wa + i) cos(%Qt + E) = 0 

or 

sin 2Qt(a - ZK I sin Qt ) + Q - c,a + i = 0. 

Now average over time and assume that (e) = 0 to get 

4ZK 
2 37r 
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TABLE 3 
Comnparison Between Observed and Predicted Dominant illode Fr-equencies at 

Intermediate Stage of Equilibriumz 

Number of Cells 

30 40 65 80 

Observed Frequency .427 .331 .370 
Q - -178 Wa .439 .329 .375 .323 

For K use the Phase II dominant mode amplitude given by equation (5.11). Then 

c o + 4 8afbx 7r2p'at 17 
2 37r 3Lpt 8fbx 18 a. 

Table 3 shows a comparison of this predicted dominant mode frequency with the 
observed results for problems at this intermediate stage of equilibrium. 

7. Summary. The instability inherent in the coupled non-linear difference 
equations (2.2) gives rise to rapidly growing fluctuations of velocity when steady 
state conditions are perturbed. These instabilities grow rapidly for a time but 
infinite growth is curbed by the dissipative properties of the equations which damp 
the fluctuations to a preliminary equilibrium state. This period of development is 
characterized by a modal exchange of energy which culminates in the emergence 
of a single dominant mode of oscillation in the system. A final equilibrium state is 
attained when the secondary mode amplitudes have all decayed to insignificance; 
henceforth the system oscillates at the natural frequency of the dominant mode with 
a constant amplitude. 
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