
Optimal Numerical Integration on a Sphere 

By A. D. McLaren 

1. Introduction and Summary. This paper discusses the approximation of in- 
tegrals over the surface of a sphere by formulas of the following form. 

N 

Eai f(Oi , ofi) | (@ ) dS. 

Little has been published on this subject or on its extension to the solid sphere. 
The literature is surveyed briefly in Section 7. Most of our space is devoted to 
formulas invariant with respect to a finite group of rotations of the sphere. We 
study such formulas by means of the group characters, as does Sobolev [12, 13]. 

The criterion by which integration formulas are usually judged is that of 
efficiency. It is defined like this. Consider a system of functions over the domain of 
integration such as polynomials in Euclidean space or surface harmonics on the 
sphere. They have properties of completeness and they are ordered in a natural way. 
Suppose that the integration formula is exact for the first L independent functions 
and therefore for all linear combinations of them. The efficiency E is the ratio of L 
to the number of arbitrary constants in the formula. The latter is a fixed multiple 
(one more than the dimensionality of the domain of integration) of the number N 
of points at which the integrand is evaluated. 

A linear combination of surface harmonics (of degree not more than p) will be 
called a spherical polynomial (of degree p). If we choose to embed the surface of 
the sphere in Euclidean space of three dimensions, we find that the trace left on 
the surface by an ordinary polynomial in x, y and z is a spherical polynomial of the 
same degree. For the surface of the sphere a pth degree integration formula (exact 
for spherical polynomials of degree p) has 

p 

L = (2m + 1) = (p + 1)2 
m=O 

and 

E_= (p +l 
3N 

Efficiency is a useful yardstick and the main part of this paper is written with 
reference to it. It is not beyond criticism as we shall see later. One suspects that 
efficiency is used for higher-dimensional regions, largely because it is the natural 
way of expressing the classical results of mechanical quadrature for the line segment. 
It is these results that we first attempt to generalize to the surface of the sphere. 
Generalization from the line segment to the circumference of the unit circle is 
achieved by replacing the classical arguments [14, Theorem 3.4.1] by their analogues 
for a complex variable and using the theory of polynomials orthogonal on the unit 
circle [14, chapter XI]. The classical arguments do not extend to the sphere but we 
may continue as follows. 
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In the case of unlit weight functioni the poinlts of the integration formula for the 
circumference are evenly spaced. In other words, the set of poinlts is invariant under 
a finite group of rotations of the uniit circle. In the case of the sphere we are con- 
sidering only uniit weight function so that it is natural to study sets of points in- 
variant under one of the finite groups of rotations associated with the regular solids. 
Sections 2-6 are concern-ed with this. 

Let g be the order of the group. Then we shall see that, apart from any intrinsic 
merit, the use of an invarianit formula reduces by a factor of approximately g the 
niumber of independent surface harmonics for which the formula must be made 
exact. This enables us to find some efficient formulas. They are listed in Table 2. 
The most spectacular is accurate to the 14th degree, that is exact for 225 inde- 
pendent functions, and uses only 72 points so that E > 1. 

In the case of the circle it is possible to determine an infiniite sequence of formulas 
of increasing accuracy and with E near unity. As far as the writer is aware, no one 
has shown that this can be done for the sphere or any other two-dimensional region; 
although E = 3 has been obtained for the sphere by cartesian product methods (see 
Section 7). There is no evidence yet that E = 1 is a fruitful target in more than 
one dimension unless we are content with limited accuracy. Nor is E = 1 a strict 
upper bound to what may be achieved, as showni by the 14th degree formula cited 
above. It may be better to seek to generalize the classical results of mechanical 
quadrature without reference to the efficiency E. 

In a sequel to this paper it will be shown how restatement in probabilistic 
terms leads to a concrete problem of minimization with respect to disposition of the 
sample points (cf. Section 7.1). This method applies also to the circle and yields 
the classical result. 

If approximate integration is to be programmed the number of sample points 
may be unimportant. To meet this case a sequential procedure based solely on 
symmetry is outlilned in Section 7.2. 

The subject of this paper is essenitially the wide dispersal of points on the surface 
of a sphere. It is relevant to interpolation and to certain problems of mathematical 
statistics, as well as to numerical integration. 

2. Existence of Formulas. Properties of group representations assumed here 
are given by Heine [4, Appendix C.]. 

The three finite groups 4, 84,5 of rotations of the sphere are associated re- 
spectively with the regular tetrahedron, octahedron-cube anld icosahedron-dodeca- 
hedron. Let G be a realizatioln of one of these groups, of order g, anld let w(R) be 
the set of n positionis on the sphere that an arbitrary point R takes up under the 
different rotations of G. In general n = g, but if R coincides with a vertex of the 
regular solid, the centroid of a face (vertex of the dual solid) or the mid-point of 
an edge, then n < g. 

Now there is induced on the set c (R) an n-dimelnsional permutation represen- 
tation {D} of G. This may be split into its component irreducible unitary represen- 
tations { Dx; that is, the carrier space Q of dimension n, is a direct sum 

o s 3 Qeue X = I D m r 

ofE subspaces Qx , each invariant under G. The dimenlsionl of Qvi is that of I Dx I multi- 
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plied by the number of times the latter appears in { D}, which may be zero. The 
Qx are mutually or-thogonal, because permutatioiis are unitary transformations. Now 
e, the vector with equal components, is invariant under all permutations and so 
belongs to Q, , the subspace subject to the identical representation {D1}. 

We turn next, for reason-s given in the Introduction, to the surface harmonics 
of fixed degree m. These form a (2m + 1)-dimensional function-space V invarianit 
under all rotations of the sphere, and therefore under those of G. So a (2m + 1) - 
dimensional representation {A}m of G is obtained, and V is a direct sum 

V Vx; 

where the subspaces Vx comprise functions which transform under G according to 
the inequivalent representations {DDx}. Consider now the natural projection of V 
into Q 

V ) 

whereby every function of V is identified with the n-vector of its values at the 
points of w(R). Because G operates both on V and on Q then further 

Vx > Q, X = 1, *., r. 

If 

1/I- Vx; X# 1, dim Vx 5# O, dim Q,x# O 

N 0Vx; AS 1, dimVxO0, dimQx = O 

then 

V = V1 G) M G) N 

and the functions of N vanish at every point of w(R); while the functions of J/l 
are orthogonal, over w(R), to Q, and thus orthogonal to e, that is their average over 
Q(R) is zero. The functions of V1 are constant over w(R). 

The point of this decomposition is that the true value of the integral of anly 
surface harmonic of degree m is zero, except when m = 0. Now V1 does not depend 
on the particular invariant set w(R) under consideration so that an integration 
formula which assigns equal weights to points in the same invariant set is accurate 
for the whole of V if it is accurate for V1. This statement is trivial when m = 0 
for then V = V1 . From now on we shall distinguish different values of m by writing 
V(m) for V and Vi(m) for V1. 

The dimension of V1(m) is the number of times the identical representation ap- 
pears in {Q}m. Let this be dim), for m = 0, 1, 2, . Then an integration formula 
accurate to the pth degree may be found using just 

Cp _Edi 
m=O 

invariant sets. In fact almost any Cp sets will do, by the following 
THEOREM. The set of points R1 , R2, - , R1, on the spher-e is said to be a p-adequate 

h-tuple if there exists a pth degr-ee integration for-mula, invariant under G, which uses 
only w(R); j = 1, **.., h. Then the set of Cp-tuples which are not p-adequate has 
measure zero (with respect to the natur-al Cp-fold pr-oduct measure). 



364 A. D. MCLAREN 

Proof. Let a basis of linearly independent functions of 

Up- (0 Vi'; m = 0, 1, *-., p 

be fi(O, 4)); i= 1, C, C. Then the Cp-tuple (Rj); j = 1, , C, is certainly 
p-adequate if the C, X Cp matrix whose (i, j)th element is the sum of the values of 
fi(6, 4) at the points of w(Rj) is non-sinlgular. Now Vj(m) contains only functions 
that are constant over any w(R), so that the determinant that must not vanish is 
simply 

det A-- Ifi (Rj) II. 

The proof is by induction: we assume that R1, *.. , Rh have been chosen, where 
1 < h < Cp , so that the first h columns of A are linearly independent and show 
that almost any choice of h+l will do. Let At (i = 1, * , Cp) be constants, not all 
zero, such that 

Cr 

3ifi(Rj) = 0; j= 1, , h. 
i=1 

If R is any point on the sphere such that the column f.(R) is linearly dependent 
on the first h columns f.(R1), j = 1, ,h, then 

C, 

E fl(R) = 0. 

Now this finite sum of surface harmonics is not identically zero because the fi(*) 
are the linearly independent functions of U. Hence the set on which it vanishes 
has measure zero. Thus for almost any Rh?1 the first (h + 1) columns of A are 
linearly independent. It follows by induction that det. A is non-zero p.p. 

3. Calculation of Cp. Before this theorem can be put to work the numbers 
C, must be calculated. 

The decomposition of {A}m is a straightforward matter involving the characters 
of the {D,} and of {Alm itself: see for example Heine [4, page 119]. Consider a ro- 
tation of the sphere through an angle A/ about any axis: with this as axis of co- 
ordinates the tesseral harmonics 

eis I"Pm (cos 0); s = 0, +1, ...* , m 

are eigenfunctions of the rotation, with eigenvalues ei8S. So the character of {IAJm is 

E i3 = sin (m + DXt' 
s=-m sin 1k 

Hence 

I 1 sin (m + 1})I 
g k=1 sin 12 k 

where the kth group element is a rotation through an angle 4Ik . The results are 
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quite simple because 
(m) _di(m) (2m + 1) 

g 
is periodic inl m, with period 1q. 

An ingenious alternative for (1) is obtained by Sobolev [12]: let ql, q2, q3 be 
the orders of the subgroups of G which give rise respectively to the vertices, faces 
and edges of the regular solid. Then he finds, for 0 < m < lg-1, 

d(m) = 0, 2m + I _ g l/q 

- 1, 2m?+ > g Zl/qJ 

where summation extends only to those qi which are not factors of m. Extension to 
larger values of m follows of course from the periodicity of b(m). 

TABLE 1 
Data on Groups 

q1 2 q3 9 

a4 3 3 2 12 
S4 4 3 2 24 
(a 5 3 2 60 

G4 84 a5 

No.eof 13 34 4 1 6 8 3 6 1 15 20 12 12 
elements 

4/k 0 r 27r/3 -27r/30 ?r/2 427r/3 7r 7r 0 7r 27r/3 2ir/5 47r/5 

Tetrahedral Group G4 

m: 0 1 2 3 4 5 
di(m): 1 0 0 1 1 0 

d1(m+6) = d1(m) + 1. 

Octahedral Group 84 

m: 0 1 2 3 4 5 6 7 8 9 10 11 
di(m): 1 0 0 0 1 0 1 0 1 1 1 0 

(m+12)= 1(m) ? 1 

Icosahedral Group @5 

m = 0,1,* *, 14: di( )1 for m = 0, 6, 10, 12 
= 0 otherwise f 

m = 15, 16, ,29: di(m) = O for m = 17, 19, 23, 29 
= 1 otherwise 

(m+30) d(m) + 1 
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The 4k , qi anid di (i) for all three groups appear in Table 1. The C, may be 
found simply by counting the di("). However even this exertion may be avoided by 
the following observation. 
Let 

(2) Cp, (p + 1)2 + E(p); p = 0, 1, 2, 

Then E(p) = 0 when (p + 1) is a multiple of 'g and 5 < E(p) < 6 otherwise. 
This statement, once proved, determines the integer Cp exactly. Direct calculation, 

using Table 1, shows that the statement is true when 0 ? p ? < g- 1. We show 
that it is valid without restriction on p by proving that E(p) is periodic, with period 
19 

e(p) = p - ! (p + 1)2 = E(m) 

9 m=O 

It is convenient to define C-1 = 0, so that E( -1) = 0 and 

p+1/2g 

IE(p + lg) - E(p) E Z (m) (p -1, 0, 12, ... 

Now this is independent of p, because 6(m) has period 'g, so 

1/2g-1 

E(p + lg) - E(p) = E (m) 
m==O 

1/2g-1 

= Z d(m) _g 
m=O 

=0 

by inispection of Table 1. Hence E(p) is periodic, with period 'g. 

4. Choice of Invariant Sets. In Figure 1 the spherical triangle XX'X" matches 
a face of the tetrahedron, octahedron or icosahedron. Y is the centroid and Z is 
the mid-point of XX'. The invariant sets c,(R) are in one-one correspondence with 
the points of the closure of triangle XYZ together with the interior of triangle 
X'YZ. Each has g points, if we exclude the three special sets w(X), w( Y) and w(Z) 
which together have only (g + 2) points. So by (2) an arbitrary Cp-tuple provides 
an invariant integration formula with (p + 1)2 + gE(p) points. It is p-adequate 
(almost certainly), i.e. it is accurate for 

p 

Z (2m + 1) = (p + 1)2 
m=O 

linearly independent functions. 
Now compare what happens if the integration formula is based on (p + 1)2 

arbitrary points, quite unrelated to any rotation group. Take Go to be the (un- 
interesting) group with just one element. Section 1 still applies and we have in this 
trivial case di(m) = (2m + 1) and C, = (p + 1)2. So the (p + 1)2 arbitrary points 
form a Cp-tuple of "invariant sets" for Go and the Theorem shows that it is almost 
certainly p-adequate. Hence the use of formulas invariant under (non-trivial) ro- 
tation groups G does not, by itself, achieve anything. 
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X"' 

x z X' 

FIG. 1 

For the octahedron and icosahedron, invariant sets corresponding to points on 
the boundary of triangle XYZ are self-antipodal and therefore eliminate odd har- 
monics automatically, but full use of this property involves restriction to a set of 
measure zero. Sobolev [13] augments G by reflection in the origin to obtain a group 
G* of order 2g, and considers only sets c*(R) invariant with respect to G*. These 
are in one-one correspondence with the points of the closure of triangle XYZ. 
Unless R is X, Y or Z, @*(R) has g or 2g points according as R is or is not on the 
boundary of triangle XYZ. Sobolev considers two series of formulas, of increasing 
adequacy, and calculates their efficiency. This depends on the proportion (which 
tends to zero) of points lying on the boundary of triangle XYZ. So even these are no 
more efficient, asymptotically, than if the points were chosen at random. 

Our theory seems to be useful only where it simplifies the proper choice of in- 
variant sets to obtain efficient formulas. We saw at the beginning of this section 
that the efficiency of an integration formula based on C, arbitrary invariant sets 
could not be expected to exceed 

(p+-1)2_ (pA+) <1 
3gCp 3[(p + 1)2 + g9(p)] = 3- 

Consider the choice of a formula based on h general invariant sets w(Ri) and 
h' special ones, where h and h' are fixed integers and 0 ? h' < 3. The Ri vary within 
a two-dimensional region and so each general set may be said to have two positional 
degrees of freedom. The weights to be assigned to each set are also (as before) at 
our disposal so that the formula has altogether 

2h + (h + h') = 3h + h' 

degrees of freedom. We hope that each degree of freedom can be used to bring one 
more independent function within the formula's domain of accuracy. We adopt the 
Working Hypothesis: An invariant integration formula accurate for spherical poly- 
nomials of degree not more than p may be found using just h general invariant sets 
and h' special sets, if 

(3) 3h +h'= C,. 
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To try and construct the formula seems to be the simplest way of finding out 
whether, for a particular value of p, the hypothesis is true. Assuming its validity 
for the moment we shall consider the efficiency 

E_- (p + 1)2 E 
3N 

of conceivable formulas satisfying (3), where N is the total number of points used. 
E -* 1 as p -* o, for 

N = gh + 0(1) 

and so 

3N = 3gh + 0(1) = g(Cp - h') + 0(1) 

= gCp + 0(1) 

= (p + 1)2 + 0(1). 

We saw just now that without the positional degrees of freedom 3N = 3gCp = 

3(p + 1)2 + O(1) so that E -> I 

In fact E > 1 for some finite values of p, as we see below. 
1) h' = 0: 3h = Cp and N = gh = gCp, so 3N=(p+1)2+gE(p)(p+1)2 

with equality (i.e. E = 1) if and only if e(p) = 0, that is when (p + 1) is a multiple 
of 29. 

2) h' = 1: 3h + 1 = Cp and N = gh + g/ql because the smallest special set 
will be used, of course. So 

3N = g(Cp - 1) + 3g/qi 

= (p + 1)2 + g(e(p) - (1 -3/qi)) 

3) h' = 2: Similar argument gives 

3N (p + 1)2 + g(e(p)- (2 -3/qi - 3/q2)) 

= (p + 1) + g(E(p) -(1-3/qi)) 

because q2 = 3 for all three groups. 
4) h' = 3: 3h + 3 = Cp. The three special sets have together (g + 2) points 

and would be better replaced by another general set. So E is strictly less than in 
case 1), that is E < 1. 

When e(p) = 0, Cp = l(p + 1)2. Since g is divisible by 3 and Cp is an integer 
(p + 1)2 is divisible by 3. So (p + 1)2 is divisible by 32. But g is not divisible by 
32. Hence Cp is a multiple of 3. 

So from case 1) every value of p such that (p + 1) is a multiple of 2g gives a 
formula with E = 1. In cases 2) and 3) E > 1 if 

e(p) ? 1 - 3/qi = 0, 47 
2 

for a4, 84 and 65 respectively. Now for 84 E(p) _ 4 only when e(p) = 0. So cases 
2) and 3) cannot give E ? 1, for a4 or 84, because e(p) = 0 implies that Cp is a 
multiple of 3. For G6, e(p) = 2when p + 1 +-6 (mod 30) and 0 < e(p) < 
when p + 1 4 10, 15 (mod 30). These give formulas with E > 1 only when 
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C, is not a multiple of 3. By the periodicity of E(p) 

C - Op =AT1(p + 1 + 30)2 - 1 (p + 1)2 

- p + 1 (mod 3). 

A short calculation shows that cases 2) and 3) give E _ 1 for a5 when 

p + 1 :1:6, 15 (mod 30) 

or 

p + 1 -10, =t20 (mod 90). 

Combining these results with those of case 1) we list finally those values of p 
for which the Working Hypothesis (if true) predicts an invariant integration 
formula of degree p with E > 1. 

p+1O0(mod6) E = 1 

p+1--15(mod30) E > 1 

p + 1 4 ?10 (mod 90) 

p + 1 ?20 (mod 90). 

In the next section necessary and sufficient conditions are given for a formula 
to be accurate up to degree p. In section 6 these are used to construct some low- 
degree formulas. It will then be seen that the Working Hypothesis is frequently 
valid and that E > 1 does occur. 

5. Conditions for a pth-Degree Formula. Let Al, A , Abe arbitrary points 
on the unit sphere and let ym, be the arc-length ArAs . Let a1, ... , at be real weights. 
Then Zr=, a1f(Ar) vanishes for all surface harmonics f(*) of degree rn if and only if 

t t 
Z 7arasPm (cos 7rs) = 0. 

r=1 s=l 

This follows from the addition theorem for spherical harmonics 

2n + I m n n 2m + 1Pm(cos Yrs) = E Tm (Ar)(Tmf(As))* 
4 - n =-m 

where the T?nn(*) are normalized tesseral harmonics. 
Now let R1, R k, & be any k-tuple; and define for i, j = 1, *, k: 

ni ni 

mj) = Pm(cos ArBs); Ar E w(Ri) 
r=l s=1 

B,, E c(Rj). 

ni = g except when w(Rj) is one of the special sets. The k X k matrix 

is symmetric and non-negative definite (by the addition theorem) and the k in- 
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variant sets, with vector of weights a, provide a pth degree formula if and only if 

a (m)a = O; m = l 2, * , p 

that is 

II(m)a= O; m = 12.m , 2, ,p. 

In fact E aini # 0 is also necessary, but it is impossible to overlook the failure of 
this condition in practice, so we shall not mention it again. 

LEMMA. The rank of Hl(m) is at most dP(m). 
Proof. A non-zero vector of weights may be found for any h-tuple of invariant 

sets, where h > dipm), to eliminate the surface harmonics of degree m. This follows 
from Section 1, since d1(m) homogeneous equations in (dP(m) + 1) unknowns have 
always a non-zero solution. Hence, by the argument of the present Section, all 
principal minors of 11(m) larger than dP(m) X dP(m) vanish. But 11(m) is symmetric, so 
that its rank is at most d1(m). 

In particular when d1(m) = 1 

(in) /(m)(m)); = ?1. 

So if dim) ? 1 (m = 1, , p) the conditions a'II(m)a = 0 for a pth degree formula 
become 

Z aV1rii = ; d(m) = 1 

since values of m for which dP(m) = 0 impose no constraint. Returning to the defi- 
nition we find that riim) is a complicated function of the position of Ri. The special 
set w(X) will now play the role of a pivot, to simplify the form of the constraints. 
Define Ro X, which may or may not be a member of the k-tuple. We have of 
course 

(m) (m) (m) i = 1 ... y kc 
irio = E_Eo V /(7rii IT ); id ( =1 

and so 
k ~M = 1?<m < Z asirio = 0; d1(m) = 1 

This is sufficient provided r(m) vanishes only when d1(m) does. It can be shown 
that, for the tetrahedron ir() = 0 implies d1(m) = 0. We omit a proof because one 
may be obtained by the methods which are applied below to the other two groups. 

For the octahedron and icosahedron, 7r(m) vanishes for all odd m because co(X) 
is self-antipodal. So if there are odd harmonics to be eliminated they must be treated 
separately. If m is even and di(m) > 1 then r(m) could vanish only by accident: 
we shall show that this never happens. 

Group 84 The distance between two vertices of the octahedron is either 0, 
/2 or 7r, and 

(2r) 6X2 + ) = lroo 6- (1 +2P2r(O)) 0, 1, 2, 
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The inequality: 

(sin 0)12* P(cos 0) I < n-1/2 

given in Szego [14, page 163], shows that i Pn(O) I < I when n > 3. So 7r(20r) # 0, 
when r ? 2. But d1(2) = 0. 

Group 5 The distance between two vertices of the icosahedron is either 
0, a, r - a or r and 

(2r) ~ 52(o 
7roo = 12 X 2(1 + 5P2a(COS a)); r = 0, 12, 

Since di (2) = 0, ir = 0; so COS2 at = 5. The inequality gives I P( 1/V/5) < 5 

when n > 18. Thus iroo) 
6 0 when r > 9. Since di(2) = = = = 0, 

only the cases 2r = 6, 10, 12, 16 remain. 
Now the coefficients of a Legendre polynomial, when multiplied by a suitable 

power of 2, are integers. So, for r > 2, 5P2r( l/\/5) can be an integer only if the 
coefficient of the leading term of P2r( *) contains a power of 5. If it contains a single 
factor of 5, then the next coefficient must not contain a power of 5. The leading 
terms of Pn(u) are: 

1*3*5 **. (2n -1) i n n(n -1) I -2 + 
1 2-3. ... n 2(2n- 1) 

and the first coefficient has no power of 5 for n = 6, 10, 12. For n = 16 there is a 
single factor 5, but this is present also in the second coefficient. So 5P2r(1/V/5) 
is not an integer for 2r = 6, 10, 12, 16. 

Hence ir(2r) 5! 0 for 2r = 6, 10, 12, 16. 

6. Construction of Formulas. We can now find some formulas whose efficiency 
is near unity. The tetrahedral group is not considered because every tetrahedral 
invariant set can be supplemented by another to form an invariant set of an 
octahedral realization (since two mutually antipodal tetrahedra make a cube). 
Nor do we look for formulas with more than one general invariant set (h > 1), 
because the calculations become more complex. The results obtained are listed in 
Table 2. 

6.1 Special Sets Only (h = 0). Obvious at once are formulas based on a single 
special set (h' = 1). The existence of the others must be proved by calculation 
and a first step is to find the distances from a point of c(Ro) = (X) to the points 
of w( Y) and co(Z). 

Group 84: The distance between a vertex of the octahedron and one of the cube 
is 4 or 7r - 4 where, since di2) = 0 T(2) - 0 (with obvious notation). 
Thus P2(cos 4) = 0, so: 

2 _ 1 
Cos4- 

The distance between a vertex of the octahedron and the mid-point of an edge is 
AP, 7r/2 or 7r - if where 7r(2) = 0, that is: 

2P2(cos IP) + P2(0) = 0, 
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so 

CosA 2- 

Group (a5: The distaiice between a vertex of the icosahedron and one of the 
dodecahedron is a, 0, 7r or 7r - a where, since di2- di4) 0 = O, 7r = 0. 

TABLE 2 
Summary of Formulas 

Tetrahedral Group 

The four vertices of the tetrahedron, that is the special set co(X), provide a 
second-degree formula. The group is not exploited any further for the reason given 
at the beginning of Sectionl 6. 

Octahedral Group 
-~~~~~~~~~~~~~~~~~~~~Pi 
p C, N E ax ay az a R Pity 

3 1 6 0.89 1 K~ S 
81 

12 

5 2 14 8 9 K S 
18 1 2 K S 
20 9 -16 

7 3 24 0.89 1 (0.866, 0.423, 0.267) 
26 40 27 32 K 

8 4 30 0.90 16 21 (0.819, 0.517, 0.251) 

11 6 50I 0.96 9216 15309 16384 14641 (0.906, 0.302, 0.302) 

Icosahedral Group 

5 1 12 1.00 1 E S 
20 1 F 
30 1 

9 2 32 1.04 25 27 F S 
42 25 32 S 
50 27 -32 

11 3 62 625 243 512 

14 4 72 1.04 125 143 see Section 6.42 

p: degree of spherical polynomial for which formula is exact. 
C: number of degrees of freedom of formula. 
N: lnumber of points. 
E: efficiency (listed only once for each value of p). 
ax I ay I az , a: weights assigned to points of w(X), w(Y), w(Z), w(R) respectively. 
R: Cartesian co-ordinates of generator of w(R). 
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Henice: 

P2(cos a) + P2(cos A) = P4(cos a) + P4(cos a) -O, 

so 

COS a, COS2 ( = +( 2V5). 

The distance between a vertex of the icosahedron and the mid-point of an edge 
is y, a, 7r/2, r - a or wr - y where 7r (2= = = 0, that is: 

P2(cos 'Y) + P2(cos a) + P2(0) = P4(cos eY) + P4(cos 3) + P4(0) = 0, 

so 

cos y, cos a (5 V -\/5). 
The three designs for each group that use just two special sets may now be 

founid. So may the designs using three special sets. The calculation is givenl onlly for 
the 1th degree icosahedral design. 

We demand: 

ax7r( + ay7rT? + az7r(j2 = 0; m = 6, 10. 

It is true in any case for m = 2, 4, 8. Consider the expansion, when m is even, of 

(cos 0)" in Legendre polynomials Pt,(cos 0): the constant term is 1 . It follows 
m + 

that we require for m even and ?10: 

ax E E (cos Ors)W + ay X E (co C )c + az E E (cos Ors)m 
@(X) @ (X) co(X) @Y) @(X) co(Z) 

= m+1 (12' ax + 12.20ay + 12.30az) m + 1 

where the angles involved have just been found. 
Putting m = 6, 10 we obtain 

ax/52 - ay/33 - az/25 = 0 

72ax/54 - 17ay/35 - az/24 = 0 

and so 

ax:ay:az = 54:3: 29. 

6.2 Octahedral Group: h = 1. The simplest formula is one with a single, genleral 
invariant set but no special sets. The conditions are 

7riO =-0; 1 m T7 

For any m > 0, 7r0 vanishes somewhere on the sphere because, regarded as a 
function of R*, it is a surface harmonic of degree m > 0 so that its integral over 
the sphere vanishes. Two may or may not vanish together, but there is certainly 
no reason to expect a simultaneous zero of more than two. So with g = 24 points 
we can hope for a 7th degree formula. 

Let 4-yi , ?t,u2, ?M3 be the cosines of the distances from a point of the required 
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invariant set to the octahedral points. Let v; _ i2 (j = 1, 2, 3). Then 

7 jM) = O; m =2, 4, 6 
* .~~~~~~~~~~~~~~~~~~~~~~1 

implies 
3 

Evjn=-+- n= 1,2,3 

by the expansion of U in Legendre polynomials. Hence the vj are the roots of 

105V -105V2 + 21v - 1 = 0 

which are, nearly, 0.750, 0.179, 0.071. Since these squares of the direction cosines 
are real, lie between 0 and 1, and sum to unity, the set exists. In fact there are two 
mutually antipodal sets. Either gives a 7th degree design. 

Two more formulas based on the octahedral group are found. The first is 8th 
degree with 30 points (h = 1; h' = 1). 

ao7r(m) + air ') = 0; m = 2, 4, 6, 8. 

With notation as before and Sn -Z=1 vj, then S4, S3 and S2 can be expressed as 
linear functions of the ratio of weights a/ao . Since Si = 1, the cubic whose roots are 
the vj has just two unknown coefficients and S4, S3, S2 have an alternative expres- 
sion in terms of these. When the unwanted solution Ri = X is rejected the equations 
can be solved and the cubic is 

441V3 - 441V2 + 105v - 5 = 0 

with roots 0.670, 0.267, 0.063 approximately, and ao: a = 16:21. Again there are two 
equivalent, mutually antipodal formulas. 

The case (h = 1; h' = 2) could give a 9th degree formula with (at least) 38 
points. We do not investigate this because a 9th degree formula with fewer points 
has already been found, based on the icosahedral group. 

The case (h = 1; h' = 3) is more valuable so we solve it. The only novelty is 
that an odd harmonic must be eliminated. This is done by confining Ri to the bound- 
ary of triangle XYZ (see Figure 1, Section 3). The "even" conditions 

ao7r( 
) + av1i + a27r02 + ario = 0; m = 4, 6, 8, 10 

give, after elimination of the weights, a linear equation in S5 , S4 , S3 , S2 . There are 
now two possibilities: if Ri is on XZ it is distance ir/2 from X" and one root of the 
cubic is zero. This leads only to Ri = X or Ri = Z, both of which are unacceptable. 
So Ri must be tried on XY or YZ, implying that the roots have the form v, v, 1-2v. 
The linear equation in the S. is now a quintic in v but after rejection of the solutions 
corresponding to Ri = X, Ri = Z and Ri = Y (twice) only 

v= 1/11 

remains. The weights aO:al:a2:a are as 210.32:37. 7:214:114. 

6.3. Icosahedral Group: h = 1. An 11th degree formula with one general set 
alone (h = 0) is expected. The conditions are 

in) = ; < m < 11. 
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Let ?Uj (j = 1 ... i 6) now be the cosines of the distances from a point of the 
required invariant set to the vertices of the icosahedron. Let Vj-u.ij2 (j = 1, 6). 
Then 

7r=0) 0; n =2, 4,6, 8, 10 
. .~~~~~~~~~~~~~~~~~~~~~~1 

implies 
6 

=n vj 2n+1 n = 1, 2, 3, 4, 5, 

by the expansion of M2' in Legendre polynomials. S6 can be found from the remain- 
(14) (4 ing condition Ti1o = 0 which is satisfied vacuously, since d14 = 0. 

The sixth degree polynomial whose roots are the vj is now determined, but when 
it is solved only two of the roots are found to be real. Hence there is no 11th degree 
formula based on a single invariant set of the icosahedral group. 

This instance of failure of the Working Hypothesis of Section 4 is interesting 
because of its success in all the other cases investigated (those listed in Table 2). 

Finally, we solve the case (h = 1; h' = 1) to obtain a 14th degree formula with 
72 points. As predicted in Section 3, it is super-efficient (E > 1). The solution is 
determined by 

ao7ro + a7rO= 0; m = 2, 4, , 14, 

and the calculation, although lengthy, is similar to those already described. After 
rejecting Ri = X we find 

aO a = 125:143 

and 
6 542 2556125V - 5112250v5 + 3578575v - 1043900v3 + 115115 2 - 3562v + 9 = 0. 

This was solved on EDSAC II, with this result: 

vi= 0.83186 V3 = 0.41189 V5= 0.044731 

V2= 0.56075 V4= 0.14800 V6 = 0.0027682 

We have still to show that these six numbers are the squares of the cosines of the 
distances from some point R on the sphere to the vertices of the icosahedron. If 
so then we have a 14th degree formula based on c(X) and co(R). Now cos-1(v,112) 
is just greater than 240 while cos 1 (V21/2) is just greater than 410. Thus 

cos 1 (v1/2) + cos-1 ( V21/2) > 650. 

The distance between two neighboring vertices of the icosahedron is cos-1 (5-1/2) 

which is just less then 640 (Section 5). So there is a point R such that vp and V2 

are the squares of the cosines of the distances from it to two vertices of the 
icosahedron. Now the sixth degree polynomial satisfied by the Vj (j = 1, * , 6) 
was constructed so that the sums Sn -- satisfied four vacuous conditions, 
that is conditions satisfied whatever position Ri takes on the sphere. It is shown in 
the next Section that these conditions ensure that the remaining Vj (j = 3, , 6) 
are the squares of the cosines of the distances of the point R (determined by vp 
and v2) to the remaining vertices of the icosahedron. 
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So we have found a super-efficient formula accurate for spherical polynomials of 
degree not more than fourteen. In Section 6.42 we show how to find the co-ordinates 
of the required points with respect to rectangular axes with origin at the center 
of the sphere. This will provide also a useful numerical check on the calculation. 
The co-ordinates are listed in Table 2. 

The cases (h = 1; h' = 2) and (h = 1; h' = 3) for the icosahedral group have 
not been investigated. 

6.4. Icosahedral Co-ordinates. The icosahedral co-ordinates of a point on the 
sphere are defined to be the squares of the cosines of the distances from that 
point to the twelve vertices of the icosahedron. Since these vertices are antipodal 
in pairs a point has just six icosahedral co-ordinates. They are of course the Vj of 
the previous Section. 

6.41. Existence of a point with given icosahedral co-ordinates. 
Remark: Consider a sextic equation with roots vj (j = 1, * , 6) which are real 

and lie in [0, 1]. Suppose the equation has been constructed as if its roots were the 
icosahedral co-ordinates of a point on the sphere, that is 

7r ) = 0; m = 2, 4, 8, 14. 

Suppose further that there is a point on the sphere with icosahedral co-ordinates 
v," (j 1, * , 6) two of which coincide with two of the roots. Say- vi" = pi' and 
P2 = v2I; then the other icosahedral co-ordinates vj" (j = 3, * , 6) coincide with 
the other roots Vjf (j = 3, ... , 6). 

Outline of Proof: The values m = 2, 4, 8, 14 are of course those even ones for 
which di(m) = 0. The four conditions 7r(0) = 0 are linear in the sums 

6 

Sn - S vj ; n = 1, 2, ... * 7 
j=l 

of the powers of the roots of the sextic equation. The conditions are satisfied also 
by the same functions 

6 

Sf Vj- 
n " n-= 1, 2, 7 

j=1 

of the vj", because the vj" are icosahedral co-ordinates. For the same reason 
0 <: vj < 1; and 0 < pj' < 1 by hypothesis. 

We have therefore to show that the solution of the equations 

7r() = 0; m = 2, 4, 8, 14 

in unknowns Vj (j = 1, * , 6) is unique when v' and P2 are given and 0 < Vj ? 1 
(j = 1, * , 6). The quartic whose roots are the vj (j =3 * . , 6) is constructed as 
follows: 

6 6 

7r(2) = (4) = 0 determines E and E vj2 
j=3 j=3 

and thus two of the coefficients. By use of the relations between the elementary 
symmetric functions and the sums of the powers of the roots the remaining con- 
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(8) (14) ditionls 7rio = riro = 0 yield one linear and one quadratic equation in the remaining 
coefficielnts a and ,B of the quartic. We find at last that a satisfies a quadratic the 
sum of whose roots is 

--1(436 - 14f + 40g + 20f2 - 80fg - 10ff) 

wheere 0 = f-'l + v2 < 2 and 0 _ g = v1v2 < 1. By inspection o- > 30 so that at 
least one root of the quadratic for a exceeds 15. But 0 < vj ? 1 so 

a Vl4-V5V6 + V3V5V6 + V3V4V6 + V3V4v5 ? 4. 

Henice a is determined by the quadratic. When a is known /3 can be found from the 
linlear equation. So all the coefficients of the quartic whose roots are the 
vi (j = 3, * , 6) are determined. In other words, the hypotheses of the Remark 
ensure that the vj< (j = 1, * , 6) are the vj' (j = 1, * * *, 6) in some order. 

This result shows that a formal solution obtained by the methods of Section 
6.3 will correspond to a real set of points on the sphere if and only if the roots of 
the sextic are real and lie in [0, 1] and two of the roots are icosahedral co-ordinates 
of some point. This is what actually happened in the case (h = h 1) which we 
investigated. 

6.42. Transformation to Cartesian co-ordinates. The transformation from 
icosahedral co-ordinates to Cartesian co-ordinates with the center of the sphere 
as origin is achieved as follows. The 15 diameters of the sphere through mid-points 
of opposite edges of the icosahedron form 5 sets of 3 mutually perpendicular axes. 
Choose onie set (OA, OB, OC) as axes of co-ordinates (Figure 2). 
Silnce A, B, C are (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively then the icosahedral 

A 

x5 X3 

FIG. 2 
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vertices X1, X2, , X6 are respectively 

(O, X,7p); (0, -X,p); (-p, O, x); (p, O, X); (-X, p,7O); (X, p, 0) 

where 

- 
5 / and 5 +V/5 

X 'V ~10 adp10 

were computed in Section 6.1. 
Now consider an arbitrary point R = (a, J, y) in triangle X1YC. It is clear on 

inspection of Figure 2 that the vertices X1, X2, . , X6 are ranked in order of 
increasing distance from R. So if Pi, P2, * * , P6 are the icosahedral co-ordinates of 
R in decreasing order of magnitude and Aj Pij12 (j = 1, * * *, 6) then 

XI + py = ; -pa + XY =L3; -Xa + PO = 5 

) -X+pY = L2; pa+Xy=b4; Xa+ pJ = /6J 

So the Cartesian co-ordinates (a, J, y) of R can be found in terms of the icosahedral 
co-ordinates. 

We have almost immediately the following necessary and sufficient condition 
for arbitrary positive numbers vj' (j = 1, * * *, 6) in decreasing order of magnitude 
to be the icosahedral co-ordinates of some point on the sphere. 

6 

E vj' = 2 
j=l 

Al1 + 22 = 3/-3 /-44 =5 + /6 = p 2(1 + 

/.3 + /.4 /5L - 16 PI8 - L2 X 
2 

where as usual j'= (='j')1 for j = 1, ... , 6. 
This is an alternative criterion to the Remark of Section 6.41. It differs from 

the Remark in that in practice it cannot be applied exactly, for the roots of a sextic 
equation can normally be found only approximately. So a very slight deviation of 
any of the three quotients from 1(1 + V/5) would pass undetected. 

The criterion is useful mainly as a numerical check on the calculations. When 
it is applied to the roots vj' of the sextic equation of Section 5.3, Evj = 2 by con- 
struction and the three quotients are 

1.61803, 1.6180, 1.6180 

where the last digit in each case is doubtful. In fact 2(1 + A/5) = 1.618035 
We saw above how to find the Cartesian co-ordinates of a point R with given 

icosahedral co-ordinates. All the points of @(R), and of the antipodal set, have the 
same icosahedral co-ordinates. If in Figure 2 we had taken R to be in triangle 
XjYZ instead of in triangle X1YC we would have obtained the antipodal set which 
would be equivalent. 

We show finally how to shorten the calculation of the Cartesian co-ordinates 
of all the points of @ (R). The four images of R obtained by rotation about the 
axis through Xi are found by permuting suitably the ptj (j = 2, ... , 6) of (4). No 
more calculation is needed, by the following classical property of the regular solids 
which is described by Ledermann [6]. 
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Five cubes are inscribed in the configuration of the icosahedron-dodecahedron. 
The rotations of the icosahedral group 5 induce just the even permutations of 
these cubes. The number of rotations of @5 that keep a particular cube fixed is thus 
the number of even permutations of four objects, namely 12. So 12 of the 24 sym- 
metry rotations of this cube are also symmetry rotations of the icosahedron. In 
fact they are the 12 symmetry rotations of the tetrahedron formed by any four 
nonadjacent vertices of the cube. 

Now consider a general invariant set @(R) of the icosahedral rotations. The 60 
poinlts of c@(R) must comprise just five general invariant sets of the tetrahedral 
rotations. So from any five points of @(R) that are mutually inaccessible by these 
tetrahedral rotations it is possible to generate all the points of (@(R), simply by 
applying the tetrahedral substitutions. 

The choice of (OA, OB, OC) as axes of co-ordinates (Figure 2) amounts to 
choosing one of the five cubes. The three directions are perpendicular to its faces. 
None of the rotations of the icosahedron about the axis through X1 leave this cube 
invariant; so R and its four images whose Cartesian co-ordinates have been found 
by solving equations like (4) are mutually inaccessible by the tetrahedral rotations 
of this cube. The tetrahedral substitutions appropriate to rectangular axes (OA, 
OB, OC) are generated by 

(a, A, ay)- (y, a, a) 

and 

(a, y, a) - (a, -/, -) 

When R and its four images have been identified it is thus simple to write down 
the Cartesian co-ordinates of all 60 points of co(R). 

The octahedral substitutions that generate w(R) from R when the formula is 
based on the octahedral group are the 3 X 3 pseudo-permutation matrices with 
determinant + 1. 

The tetrahedral substitutions that generate w(R) from five suitable representa- 
tives when the formula is based on the icosahedral group are those 3 X 3 pseudo- 
permutation matrices with determinant +1 in which the number of negative 
elements is either two or none. 

Five suitable representatives of co(R) for the 14th degree formula are 

(-0.15111, 0.15524, 0.97626) 

(0.31584, 0.25705, 0.91334) 

(0.34631, 0.66628, 0.66042) 

(-0.10181, 0.81739, 0.56702) 

(-0.40923, 0.50155, 0.76223). 

7. Review. Some of the formulas have been obtained before by three other 
writers working independently. They are identified by initial in the last column of 
Table 2. Finden [21 considers, besides the regular solids, axially symmetric formulas 
of Cartesian-product type and stereographic images of Simpson's Rule in the plane. 
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Sobolev [13] employs group characters to investigate some invariant networks of 
points which reduce in special cases to certain of our formulas. D. G. Kendall [5] 
has shown how to deduce others from formulas for the solid sphere of the type given 
by Ditkin [1] and by Hammer and Stroud [3]. Kendall's arguments work in both 
directiolns so that formulas for the surface may be combined to obtain formulas 
for the solid sphere-now the more natural sequence of reasoning. 

The formulas listed in Table 2 of the present paper have been constructed to 
obtain maximum efficiency subject to invariance under the appropriate group of 
rotations. This invariance seems to be at worst a harmless requirement so that for 
practical purposes the problem of spherical integration is solved provided the num- 
ber N of sample points is within the range of Table 2. The existence of larger for- 
mulas, of arbitrarily high degree p, that are efficient (E near unity) has not been 
proved although D. G. Kendall [5] has obtained E = 2 for any odd value of p. 
This is achieved by means of axially symmetric Cartesian-product formulas which 
are derived from work of Peirce [9] on the spherical shell. The same idea was applied 
earlier by Ditkin [1] to the complete solid sphere. 

In conclusion two alternative methods of obtaining indefinitely large formulas 
are suggested. 

7.1. The Extremal Property. With the notation of Section 5, let E ar = f dS = 

4ir. The conditions that an integration formula, not necessarily invariant, must 
satisfy for pth degree accuracy are 

t t 
Z Z arasPm(cos 'YS) = 0; m = 1, ,p. r=1 s=1 

Because these expressiolns are non-negative definite this is equivalent to 
t t p 

E Z aras E XmPm((cOs Yrs) = 16i 2Xo 
r=1 s=1 m=o 

where the Xm(m = 1, * , p) are any positive constants. If 
p 

Lp (A) - E xmPm (A) m-=O 
then to find a pth degree formula we have simply to arrange that 

t t 
Z E arasLp(cos 'Yrs) 
r=l s=1 

attains its minimum 167r2Xo with respect both to points A, and to weights ar. The 
number of points must be large enough for the required integration formnula to 
exist. 3(p + 1)2 points may be sufficient while (almost any) (p + 1)2 points are 
certainly sufficient. 

The polynomial Lp(,G) is highly arbitrary and it may be convenient to use the 
fact that the coefficients in the expansion of AP in Legendre polynomials Pm (,) 
are alternately positive and zero. This follows from the recurrence relation 

(2m + 1)iAPm(iA) = (m + l)Pnz+1(p) + mPmiQ(A) 

and induction on p. 
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If the points Ar are accepted only in antipodal pairs, to eliminate the odd har- 
monics, then the condition for a pth degree integration formula (where p is even) 
is 

t t 16 2 

E E aras(Cos Yrs) ' 16= 
r=1 s=1 p + 

with E = 4r. 
Instead we may modify the criterion of efficiency, which emphasizes the lower 

harmonics to the extent of ignoring altogether those whose degree exceeds p. This 
can be done by choosing a convenient function Loo(A) with a convergent expansion 
in Legendre polynomials that has positive coefficients, and minimizing 

t t 

Z Z arasLo (cos 'Yrs,) 
r=1 s=1 

In a sequel to this paper the problem of spherical integration is restated in prob- 
abilistic terms and shown to lead to an extremal problem of just this form. 

7.2. The Reproducing Icosahedron. In the main part of the paper (Sections 
2-6) only integration formulas based on the regular solids were considered and 
they were judged by the efficiency E. In the preceding Section the notion of efficiency 
was modified to provide a less artificial criterion and the regular solids played no 
part at all. In this final Section the idea of efficiency is discarded altogether and 
appeal is made only to symmetry. 

The theory of Section 2, on which we have relied so heavily has two serious 
limitations. One is its inability to treat more than one regular solid (with its dual) 
at a time, for it is fundamental that one fixed realization of the group G is considered. 
Finden [2] considers three dodecahedra in a certain mutual orientation but this 
formula seems to be beyond the scope of Section 2. The second limitation is the 
lack of further finite subgroups of the rotation group which might provide other 
regular solids. This apparent shortcoming is a valuable safeguard when icosahedra 
are reproduced over the sphere in the following manner. 

We saw in Section 6.42 that just five cubes could be inscribed in the icosahedral 
configuration and that they were permuted evenly by its symmetry rotations. The 
vertices of the cubes coincide in pairs at the centroids of the faces of the icosahedron. 
The converse property associates with any cube just two icosahedra. They are 
permuted by the rotations of the cube. 

We say two icosahedra are first neighbors if there is a cube inscribed in them both 
in the way just described. Clearly every icosahedron has exactly five first neighbors. 
We say (inductively) that two icosahedra are jth neighbors (j = 2, 3, ...) if there 
is an icosahedron that is a first neighbor of one and a (j- 1)th neighbor of the 
other. Two icosahedra are simply neighbors if for some j = 0, 1, 2, they are 
jth neighbors. Thus "neighborhood" is an equivalence relation. 

Let lo denote the twelve vertices of a certain icosahedron. Let Ij (j = 1, 2, ) 
denote the set of vertices of all the jth neighbors of lo. These sets Ij may not be 
disjoint. We propose equally-weighted integration formulas based on sets of points 
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of the following form 
M 

KM- U Ij. 
j=o 

Consider the set of points on the sphere 

KnOO U I. 
j=0 

It consists of the vertices of all icosahedra that are neighbors of Io . Let Io' be any 
such icosahedron. Because neighborhood is an equivalence relation KOO is equally 
well described as consisting of the vertices of all neighbors of Io' . So the group Gc0 

of rotations of the sphere under which the set K,O is invariant includes those rota- 
tions that transform Io into any one of its neighbors. The ordinary symmetry rota- 
tions of Io are properly included so Ge.. is too large to be one of the three finite groups 
associated with regular solids. G>, is obviously not cyclic nor dihedral. Hence G,. 
is not finite, by Weyl [15]. Hence KOO is not a finite set. It is, of course, countable. 

By suitable choice of M the integration formula based on the set KM has an 
arbitrarily large number of points. The justification for using the ascending se- 
quence of sets KM is simply the striking symmetry of their union Ko,,, as expressed 
by invariance under the group Gc,,. A high degree of symmetry in the integration 
formula is a reasonable aim because the integral itself is an invariant of the whole 
rotation group. The question of whether the points of KM are asymptotically dis- 
tributed uniformly over the sphere, and associated matters of convergence are 
postponed to another occasion. 

These formulas have two practical advantages. The sets KM are nested so that 
no work is wasted when a crude approximation to the integral is later refined. 
This applies if the sample points are found explicitly. In fact the second property 
removes the need for that if a computer is available. All that is necessary is a routine 
to locate the vertices of the five first neighbors of a given icosahedron. Sequential 
generation of the sample points should then be possible, followed at once by evalua- 
tion there of the integrand. 
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