
Jacobi Polynomial Expansions of a Generalized 
Hypergeometric Function over a 

Semi-Infinite Ray 

By Y. L. Luke and J. Wimp 

1. Introduction. Suppose f(x) is continuous and has a piecewise continuous 
derivative for 0 < x/X ? 1. Then f(x) may be expanded into a uniformly convergent 
series of shifted Jacobi polynomials in the form 

f(x) = Zan(X)Rn(aX)(x/X)X 
(1.1) ~n=o 

e ? X/X? 1-e, e > 0; a > -1, > -1, 

where R.(a,#) (x) = Pn (a?)(2x- 1) and the latter is the usual notation for the 
Jacobi polynomial [1, Ch. 10]. Various techniques are available for the determina- 
tion of the coefficients an(X). In this connection, see, for example, the references 

[2, 3, 4, 5, 6, 7]. 
Suppose that f(x) satisfies the above conditions for 1 ? x/X _ oo where 

arg X < so. Then we may write 
00 

f (x) = E bn (X) Rn(a ?) (X/x),2 
(1.2) n=O 

e _ X/x 1-, e > 0; a > -1, a> -1. 

If f(x) has an asymptotic expansion of the form 
00 

(1.3) f(X) ECnX , xOX |*0 arg x I <so 
n=O 

then (1.2) may be interpreted as a summability process which converts the generally 
divergent expansion (1.3) into a convergent expansion. If f(x) in (1.3) is of hyper- 
geometric type,* then the coefficients bn (X) may be found formally at least using the 
procedures [5, 6]. These yield for bn(X) an asymptotic series in X which is also of 
hypergeometric type. The asymptotic representation for bn(N) in general is not 
suitable for computation. We are confronted with two problems: one is the interpre- 
tatiorn of the asymptotic series for bn (X), and the other is the computation of bn (N). 

In this paper, we show how both problems can be solved for a confluent hyper- 
geometric function. Actually we derive a representation for bn(N) when f(x) is the 
G-function, which includes the confluent hypergeometric function as a special case. 
Our computational scheme for bn(X) is exhibited only when f(x) is a confluent hyper- 
geometric function, although the ideas involved can be extended to cover other 
special cases of the G-function as well. 

In Section II, we prove an expansion theorem of the form (1.2) when f(x) is the 

Received March 29, 1963. 
* For the definition and properties of generalized hypergeometric series including the G- 

function as well as other notations used in this paper, see [1, Chs. 4, 5, 6]. 
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G-function and show how both convergent and asymptotic representations for 
bn)(X) may be derived. These results are specialized in Section III for the case when 
f(x) is a confluent hypergeometric function, and in Section IV it is shown how bn(X) 
may be computed by a recursion scheme. Finally, in Section V, we tabulate coeffi- 
cients for the cases wNhere RJ(a, (x) is the shifted Chebyshev polynomial and f(x) 
is the error function, the exponential, sine and cosine integrals, and the Bessel 
funietions Ko(x) and K1(x). 

2. Expansion of the G-Function. The G-functioli is given by the Mellin-Barnes 
integral 

rn k 

1 TI r(bj - s) 1I r(i - aj + s) 
(2.1) Gm;(x , 21(Xx)S ds, 

(11X L II r(i bj + s) II 
F(aj-s) 

j=--n1+ j=k+l 

where an empty product is interpreted as 1, 0 < m _ q, 0 _ n ? p and the pa- 
rameters are such that no pole of r(bj - s), j = 1, 2, , m coincides with any 
pole of r(I - ah + s), h = 1, 2, , k. We assume x is real and the path L runs 
parallel to the imaginary axis and is indented so that the poles of r(bj -s), 
j = 1,2, m, are to the right, and all the poles of r(1 - ah + s), h= 1, 
2, , k, to the left of L. The integral converges if p + q < 2(m + k) and 

arg X < (m + k - p/2 - q/2)7r. For a treatment of the G-function, see [1, 
Ch. 5]. 

Now from [1, 10.20(3)] we have the expansion 

Xs= r( - s + i)r(i - s) 

(2.2) 0 2n+a+ +1 n+ + ), 

n=o r(n + a + f+ 2-s)r(1-s-n) 

uniformlyforRe (s) < ,tu- ,8> 0,, =min( + 1, /2+ a),> -1, > -1. 
Put (2.2) in (2.1) and integrate along the path from u - i o3 to u- 5 + ioo. 

We then get 
THEOREM I. Let 

1. a, A and x be real, a > -1, l > -1, 1 < x < co* 
Let a real positive a exist such that 
2. (a) Re (aj -1) < Au- 5, j = 1, 2, ... k; (b) Re (bj) > ,u-6, j = 1, 2, 

**m7,q,- < 1, ,u = min (+ 1, #/2 + 3). 

3. p + q < 2(m + k), I argX J < (m + k - p/2 - q/2)ir, X $0 0 < m < , 
0 < k < p. 
Then 

Gm:k(XXa p) ~~00 
(2.3) G!()x )Zb | = (2n + + A+ 1)(n + + 1)a, 

xGm+2:k a,-n,n +a+,0+2 (a,O) 
X A+2 q+2 () ilj+11bq JR. t 1/xJ. 

Remark. Assumptions 2 above insure the separation of poles and specify the 
regions in which they lie according to the remarks surrounding (2.1). Notice, how- 
ever, that poles of r(bj - s) may lie to the left of the contour. They may be excluded 
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by indentations since they lie in a region where the series for xS converges uniformly, 
provided they do not coincide with any of the poles of r(1 - ah + s). Hence, we 
may replace 2(b) by the weaker but more complicated condition 

2(b)* 1 + j-2 -ah F 0, -1, -2, 

j= 1,2, *-- m+2,h= 1,2, ck, -2 = 1, -1 =f+ 1, j-2= bi, j > 1. 

Notice from the definition of the G-function that 
n+2,k jap,1-ns,n+az+,+2 1:7>m+,l+lfx 11-n apnr+g2 (2.4) Gp+2,`+2(2X l. + ?b ? J = (-n ) +G,q+\ (X , -na+a+#+2) 

If I arg X I < 1 (p - g 1 )ir, an asymptotic representation for the coefficients of 
R,(a') (1/x) in (2.3) follows by application of a result in [1, 5.3(6)]. An ascending 
series representation follows when [1, 5.3(5)] is applied to the right-hand side of 
(2.4). 

3. Expansion of a Confluent Hypergeometric Function. We consider the func- 
tion [1, Ch. 6], 

(3.1) (XX)a(a, c I Xx) {(a)r(a)}G(G2:1(X 11 o) a + 1-c. 

Also, denote by Tn*(x) the shifted Chebyshev polynomial 

(3.2) T *(x) = T,(2x - 1) = n! Rn -"2'112)(x) 

From Theorem I, we get 
THEOREM II. Let 
1. 1 < x < ?o; 
2. o-5z 0 ,- 1,-2, a * * -a , -1, -2,**; 
3. 1 arg X < 3r/2, X 5 0. 

Then 

(3.3) (Xx)al,(a, c I x) = Cn(X)Tn*(l/X)2 
n-0 

where 

E f in En 2,1-n,n+l (3.4) Cn(X) = 12r(a)r(<) G34(Xll,/2,a.), O = 1Ea = 2,n > 0, 

or 

3 5 C (~~~~~~~n( _ )n G31 xl-n,n+1l (3.5) Cn(X) - 
/2r(a)r() G23( 1/2,a,a)* 

Also, if none of the quantities 2 a and o differ by an integer 

C() En( ( a)12(n).12X1F (n+l1/2-n?l1/21 Cn () 1/2 {: { ( a )_1/2( ( ) _1/2)/2F2 2 3/2-a,3/2-a- - ) 

( - a)(a)n(o-)-a a Fn+a,-n+a (3.6) + 2(n + 1-a) - 2F2(a+1/2,a_o+iIX) 

r( 2 - O)(U)n(a), a n+o,,-n+a + 
r(n-a + 1) X02F2 +l/2,c-a+ lX 
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and 

En(_)n (a)n(Of)n tn+1/2,n+a nta , (3.7) CX) n(4X) 3F1 \2n+1 ' - --> j H , larg XI < . 

Remark. Condition 1 of Theorem I is conservative. By an appeal to the con- 
vergence properties of expansions in Chebyshev polynomials [7], the range of x may 
be extended to give condition 1 above. 

Since (3.3) converges, 

(3.8) lim Cn(X) = 0- 

For later use, we record the fact that 

(3.9) lim (Xx)U4,(a, c I Xx) = 1, I arg XI < 37r/2. 
X- 00 

4. Calculation of the Coefficients Cn(X). Let 

(4.1) 01, n(x) = (_) Cn (X) 
En 

Following the method developed in [8], we can show from the representation (3.7) 
that (01,n (X) satisfies the recursion relation 

(4.2) YOn(X) + (An + Bn^x)?n1(1) + (Cn + DnX)XXn+2(X) + En(Pn+3(x) = 0, 

where 

An = (2n + 2) [1 - (n +)(n + a + 1)(n + +1)] 
f l [ ~~~~(n +2) (n +a) (n +) ] 

(4.3) Bn= Dn= -4(n + 1)/(n + a)(n + a), 

C= -1 + [2(n + 1)(2n + 3)/(n + a)(n + o), 

En= -(n+ 1)(n-a+3)(n-o+3)/(n+2)(n+a)(n + ). 

We prove that the coefficients may be readily evaluated using (4.2) in the backward 
direction. This backward recursion technique has been treated by many authors 
[9], [10], [11], [12], [13]. The idea is as follows. 

For fixed X, arbitrary q and v sufficiently large set 

(4.4) ( ( (X) -Y-V1(X) = O, 

(4.5) fY-2(X) = n 

The sequence 4t 3(x), *. n * * ,()(X)) ... * *9((X)), f00(X) is generated from 

(4.2). Using (3.9) and 

(4.6) T* (0) = ) 

in (3.3) we would expect that if 
v-2 

(4.7) Wv = EnOn (<) ( 
n.=O 
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then 

(4.8) Cn (X) ( )n () /WV 

with increasing accuracy as v -* o. In fact if we define 

(4.9) (X) = 1 0(x)n (X) 0 (X)2 

we have: 
THEOREM III. Let I arg X I < r, X F 0, and neither a nor a be a negative integer 

or zero. Then 

(4.10) lim j 1, n (X) = (Pi , ( ) - 
V-+oo 

Proof. Denote by 1,l,n(X), 02,n(X) and f03,n(X) the three linearly independent 
solutions of (4.2); f01,n(X) is the solution we wish to calculate. We may write* 

(4.11) (Pn = 61 (1,n + ;2 'P2,n + 63 93,n n n < v - 2, 

and the conditions (4.4) and (4.5) give 

(4.12) 0 = (v)1,v + 2 ()2,v + 3 ()P3,v 

(4.13) 0 = 6 4(1,(Pv-1 + t,2 (V) 2,v-1 + 6(3S (3,v-1 ; 

(4.14) 77 = 6(P1,lv-2 + ,2 (P2,v-2 + 3'(P3,v-2 2 

where (v) (v) and 6 (v) are independent of n. 

(4.15) Y(v)1 = Yv ) ,3 /t,( = av 

(4.16) ev = [-'P1,v'P3,v-1 + (P1,v-1'P3,v]/Tv 

(4.17) av = [-(P2,P(i1,v-1 + (P1,v(P2,v-1]/ T, 

(4.18) TV = [P2,v(P3,v-1 - 'P3,v'P2,v-1]. 

Thus 

(v) _C0P,n{l + (-Yv'p2,n/jp1,n) + (bvP03,,n/P1,n)} 
(4.19) 

- {i + (-Yvi2,n/'1,O) + (6v'P3,0/P11,0) } 

We will show that 

(4.20) lim yv = lim&v = 0. 

Equation (3.8) gives 

(4.21) lim01,v = 0. 

It may be directly verified that 

(4.22) 02,n = 2F2 3n/2a,3/2/2, 

is also a solution of (4.2). From [14] we have 

(4.23) C2, n = Ci2I3[a+?-2] exp [3n213X113] [I + 0 (1 a 

* Henceforth we write, 01(^)(X) = 1,^) S?i.n(X) = pi,,n , etc. 
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where Ci is independent of n. The third linearly independent solutioni of (4.2) is 
the L2,2( -X) term appearing in [15, 1.3.3(15)] which arises in the asymptotic ex- 
pansion of (4.22) for large X. A limit process, explained in [15, 1.3.4] is used to ob- 
tain 03,n, but our discussion here is necessarily brief. We need only the estimate 

(4.24) =0C2F(n + a- 1)F(n + o- 1) K + ( 
(4X)~nn L 

where C2 is independent of n. Thus 

(4.25) lim I2I = lim ls3I =CO 
V-oO voo 

Also, from (4.23) and (4.24), we have 

(4.26) Tv = -02,vSA03,v [ + 0 (]. 
Hence (4.20) is easily shown and the statement (4.10) follows from (4.19). 

5. Tables. Tables 1-III contain coefficients to 20 D for the expansions of several 
imiportant cases of the confluent hypergeometric function [1, 6.9]. Coefficients cor- 
responding to different ranges of the independent variable as well as those for other 
functions, e.g., Jv(x) and Yv(x), are under construction and the present tables are 
selected examples only. The expansions are readily evaluated using a nesting pro- 
cedure described in [4], [7]. For similar expansions, see [7], and for many Chebyshev 
expansions of functions over a finite interval, see [2]-[6] and the references given 
there. The number in parenthesis after each entry in the tables is the power of 10 by 
which the entry is to be multiplied. 

6. Acknowledgment. This paper covers research initiated by the Applied Mathe- 
matics Laboratory, David W. Taylor Model Basin, Washington, D. C., under 
Contract No. Nonr-2638 (00)(X). 

The authors acknowledge with thanks the valuable assistance of our colleagues, 
particularly the suggestions of Jerry Fields. The coefficients tabulated in Section V 
were computed on the IBM 1620, and the authors are indebted to the experience 
and skill of Dean Lawrence, who supervised the calculations. 

Midwest Research Institute 
Kansas City, Missouri 

1. A. ERDPLYI, W. MAGNUS, F. OBERHETTINGER, & F. G. TRICOMI, Higher Transcendental 
Functions, v. 1 and 2, McGraw-Hill, New York, 1953. 

2. JET WIMP, "Polynomial approximations to integral transforms," Math. Comp., v. 15, 
p. 174-178. 

3. JERRY L. FIELDS, & JET WIMP, "Expansions of hypergeometric functions in hyper- 
geometric functions," Math. Comp., v. 15, p. 390-395. 

4. JET WIMP, "Polynomial expansions of Bessel functions and some associated functions," 
Math. Comp., v. 16, p. 446-458. 

5. JET WIMP, & Y. L. LUKE, "Expansion formulas for generalized hypergeometric func- 
tions," to appear. 

6. JERRY L. FIELDS, & JET WIMP, "Basic series corresponding to a class of hypergeometric 
polynomials," Proc. Cambridge Philos. Soc., forthcoming. 

7. C. W. CLENSHAW, Chebyshev Series for Mathematical Functions, Math. Tables, v. 5, 
National Physical Laboratory, London, 1962. 

8. EARL RAINVILLE, Special Functions, Macmillan, New York, 1960. 



404 Y. L. LUKE AND J. WIMP 

9. M. GOLDSTEIN, & R. M. THALER, "Recurrence techniques for the calculation of Bessel 
functions," MTAC, v. 13, p. 102-108. 

10. F. J. CORBAT6, & J. L. URETSKY, "Generation of spherical Bessel functions in digital 
computers," J. Assoc. Comput. Mach., v. 6, p. 366-375. 

11. I. A. STEGUN, & M. ABRAMOWITZ, "Generation of Bessel functions on high speed com- 
puters," MTAC, v. 11, p. 255-257. 

12. W. GAUTSCHI, "Recursive computation of the repeated integrals of the error func- 
tion, " Math. Comp., v. 15, p. 227-232. 

13. W. GAUTSCHI, "Recursive computation of certain integrals," J. Assoc. Comput. Mach., 
v. 8, p. 21-40. 

14. JERRY L. FIELDS, & Y. L. LUKE, "Asymptotic expansions of a class of hypergeometric 
polynomials with respect to the order, II," J. Math. Anal. Appi., forthcoming. 

15. Y. L. LUKE, Integrals of Bessel Functions, McGraw- ll, New York, 1962. 


