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Abstract. Methods for calculating functions to a high degree of accuracy have 
assumed increased importance following the advent of the computers. It has been 
found that rational approximations require fewer operations on a computer than the 
older polynomial approximations. Among the known methods those due to Pade 
[1] and Maehly [2] are perhaps the most important. In this paper we have analyzed 
these methods as applied to the exponential function. It is observed that Maehly's 
method is superior to the Pade method in the sense of yielding better accuracy over 
a given range on the real axis for a given order of approximation. Maehly's formulas 
for computing ex correct to eight decimal places have been worked out. 

1. Introduction. A direct calculation of an nth degree polynomial 

(1) f(x) = ao + aix + a2x2 + ... + a.x', 

would require (2n - 1) multiplications. The time for this calculation in a computer 
will be substantially equal to the time for (2n - 1) multiplications, since the time 
for addition and subtraction will generally be small in comparison. f(x) can however 
be evaluated with only n multiplications by the method of nested multiplication 
defined by the formula [3] 

(2) f(x) = [{(a.x + a.-,)x + a,-2}x + *. + ao], 

which has the added advantage of not requiring any intermediate recording. 
But a rational approximation Pm(x)/Qn(x), where the suffixes denote the degree 

of the polynomials is equivalent to a polynomial approximation of degree (m + n). 
By expressing the rational function Pm(x)/Qn(x), as a continued fraction it can be 
evaluated in m or n + 1 operations according as m > n or m < n. Thus we find that 
a polynomial approximation of degree 2n, requiring 2n operations can, if trans- 
formed into a rational approximation, be calculated in only n operations. This 
economy of effort achieved by rational approximations makes it important to in- 
vestigate the relative merits of available methods for common functions. For ex 
the Pade method has been studied by Kogbetliantz [4]. We have analyzed the ex- 
ponential function and established that Maehly's method is superior to the Pad6 
method in the sense of yielding better accuracy over a given range on the real axis 
for a given order of approximation. 

2. The Pade Method. From Kogbetliantz[4] we have the Pade formula, 

(3) e = pm() + Rm(x), 
Pm(-x) 
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where 

m2 ex/ m+112 

Rm(x) = (-1)m 2 
m 

p__ X Im+112(x/2) (2m)! Pm(-x) m 

and 

p ( ) _m! m (2m -r)! r 
(2m) ! r=o r!(m -r) ! 

It can be shown that ex12/I Pm(-x) I is monotonic increasing for x < 2. Also it 
is easy to see that 

;xm+1/2 Im+1/2 (2 

is symmetric about x = 0 and is monotonic increasing for x > 0. So it follows that 
for 0 < x < 2 

IRm(-x) < I Rm(x) |< I Rm(2) |. 
Hence for -a < x ? a < 2, 1 Rm(x) I _ Rm(a) 
Again since 

0 < 'm+1/2 (a2) r(m + ) (4)m+112 < ea2/[8(2m+3)] 

it follows that 
2 a~~~2m+1 a2a/82+) 

IRm(a) I < Lm)2m' e (2+) 
| | [_(2m) !_ 2m + 1 1P,,(-a) 

Thus for -a < x < a < 2, and for all m, 

(4) IRm(X) I <~ L( !) 2mF1 a21 a12+a21 [8(2m+3)] 
4) Rmx) I 

<[_ (2m) !] 2& + 1 Pm(-a) 
e 

3. Maehly's Method. We know that 
00 

eax = Io(a) + 2E In(a)Tn(x), -1 < x < 1. 
n=1 

where Tn(x) is the Chebyshev Polynomial defined by 

Tn(x) = cos (n cos-lx). 

Hereafter we shall use Im to denote Im(a). We assume a rational approximation 
of the form 

m 
E arTr(X) 
r=O 
m 
E brTr(X) 
r=O 

The coefficients ar's and br's are evaluated by identifying the Chebyshev expan- 
sion of 
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m 
ea:xZ brTr(x) 

r=O 

with 
m 

E arTr(X) 
r=O 

up to the term T2m(X). 

These provide us with the following (2m + 1) equations to determine the ar's 
and br's. 

r m 
ao = Vs 

8=O 

(5)m 
m~~~~ ar= b8IIIr+s 'Ir-s1] r =l1 2, 3, M.,i. 

(6) Zbs[Ir+s-Ir_s] = 0 r = m + 1, m + 2 ..., 2m, 
8=0 

and 

(7) do = E bs[I2m+l+s + I2m+1-s] 
8=O 

where do is defined among other d's by the equation, 
m oo 

E arTr(X) E drT2m+l+r(X) 
ax r=O r=O 

e = - ?r m 
E brTr(X) Z brTr(X) 

r=O r=O 

Since the dr's and br's decrease rapidly and bo = 1, the error 
00 

E dr T2m+1+r(X) 
r=o 

E br Tr(X) 
r=O 

can be approximated by doT2m+l(X). Again since I T2m+l(X) < 1, the error is 
bounded by do. From equations (6) and (7) we have 

(8) Ido =12D/AI, 

where 

(Im + Im+2)) (Im-1 + Im+3)) ... (Il + I2m+l) Im+1 

(Im+1 + Im+3) (Im + Im+4) ... (I2 + I2m+2), Im+2 

. . ... ... ... ... D = 

(I2m-1 + I2m+l), (I2m_2 + I2m+2), ... (Im + I3m)) I2m 

(I2m + I2m+2), (I2m-1 + I2m+3), ... (Im+1 + I3m+l) I2m+l 

and, A is the minor of D obtained by deleting the last row and last column of D. 
If we transform D into a triangular matrix, the last element in the principal diagonal 
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TABLE 1 

Error bounds for Pade6 and Maehly's methods 

| m~~~~~~~~~~~~~~~l 
a 

2 3 4 

0.1 1 1.5 X 10-8 1.1 X 10-12 4.3 X 10-17 1.1 X 10-21 
8.7 X 10-10 1.5 X 1014 1.4 X 10-19 8.8 X 1024 

0.2 .5.4 X 10-7 1.8 X 10-10 2.4 X 10-14 2.5 X 10-18 
2.8 X 10-8 2.2 X 10-12 9.6 X 10-17 7.2 X 10-21 

0.3 4.6 X 10-6 2.9 X 10-9 1.0 X 10-12 12.4 X 10-17 
2.1 X 10- 3.2 X 1011 3.2 X 10-15 3.2 X 102? 

0.4 2.1 X 10-5 3.2 X 10-8 1.6 X 10-11 6.2 X 10-15 
8.4 X 10-7 1.2 X 10-10 4.7 X 10-14 2.9 X 10-18 

0.5 7.2 X 10-1 6.4 X 10-i 1.3 X 10-10 8.0 X 1014 
2.7 X 10-6 1.2 X 10-9 2.0 X 10-11 1.0 X 10-16 

gives the value of D/A. The values of I,n's were taken from the British Association 
Tables [7]. 

4. Comparison of the Methods. The error bounds for Pade and Maehly's meth- 
ods given by equations (4) and (8) were computed for some values of a and m, 
and are shown in Table 1. In each equare, the first entry corresponds to the Pad6 
nmethod and the second entry to Maehly's method. a stands for the range of applica- 
bility -a <_ x < a, and mn for the order of the rational approximation. 

It is seen from the table that Maehly's method is superior to the Pade method 
for the range -a < x < a, if a > 1. Also the superiority of Maehly's method 
increases with m. On the basis of rough calculations it is felt that there should exist 
a small range -a ? x < a, where the Pade method would be superior to Maehly's 
method. We have not considered large ranges, since large ranges can be reduced to 
small ones by any one of the conventional methods. 

5. Maehly's Formulas for ex. Maehly's formulas for sin x, cos x, tan .x (correct 
to 10 decimal places) and cot x, and log x (correct to 8 decimal places), are available 
[.5]. We present here Maehly's formulas for ex correct to 8 decimal places. The error 
table shows that the cases m = 2, a = .1 and m = 3, a = .5 give eight decimal 
place accuracy. In the computatioln the values of I,n correct to 10 decimal places 
were taken from the British Association Tables [7]. 

For m = 2, a = .1 we have by solving equations (5) and (6) 

ex 8.32916782 X 10-4x2 + 4.998125716 X 10-2x + 9.995836456 X 10-1 
8.327087326 X 10-4X2 - 4.997709787 X 10-2x + 9.995836456 X 10-1 

(9) = 1 000249846 + 1.200549936 X 102 1.200250173 X 103 
(9) 1.0024946 (x - 6.001500366 X 10) + (x - 2.498148174 X 10-3) 

-1 ? x < 1. 
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For n = 3, a = .5 we have by solving equations (5) and (6) 

1.027910364 X 10-33 + 2.470655174 X 10-2x2 

5x + 2.470292178 X 10-1x + 9.876743802 X 10- 
v -1.023329716 X 10-3x3 + 2.465124084 X 10-2x2 

- 2.468079636 X 10-1x + 9.876743797 X 101- 

(10) -1.004476219 - 4.834036983 X 10 
(x - 2.407138535 X 10)+ 

2.007302412 X 102 4.002103141 X 10 
(x - 8.923162505 X 10-s) + (x - 8.937067425 X 10-s) 

-1 ? x < 1. 

The values of ex calculated with formulas (9) and (10) agree to 8 decimal places 
with the 18 figure tables of the exponential function published by the National 
Bureau of Standards [6]. 
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