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1. Introduction. In the past, several authors have used finite difference methods 
to solve the cylindrical heat conduction equation 

ou _ aOu (2u (1) = + (o<?<1) 

subject to appropriate boundary conditions. One of the most recent efforts was by 
Albasiny [1], who obtailned a numerical solution of (1) for the problem of a cooling 
spinning thread line. The appropriate boundary conditiolns were 

u = 1 for all r at t 0, 

and 

= 0 (r = 0), - = (F = 1) 
ar uar 

where F(t) is an empirical function of t. 
In all cases, as far as the authors are aware, the differential coefficients in (1) 

are considered separately when replaced by differences, and the principal term in 

the truncatioln error of any difference formula obtained in this way contains u and 

(2 
-. This can be seen by obtaining the time derivatives of u from (1) in the form 

au 1 au (2u 
At rar ar2X 

a2u 1 au 1a 2u 2 a3U +4u 

(2) at2 = r3 ar r 2ar2 + rar3 +rw 

au 9 ou 92 au 4 a3u 3a 4u 3a 5u ou 

at3 r5 ar r4 r2 r 3 or2 r4 r ar5 ar6 

and noticing that a-and ar2occur in all the time derivatives. Thus no matter how 

accurately au is replaced by differences the error always contains the low order at 
derivatives of u with respect to r. 

2. Transformation of the Equation. If the variable r is transformed according 
to the relation 

r = 2x, 
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equation (1) becomes 

(3) u =-+x-. (O x <) 

The higher time derivatives of u are given by 

la2 2u '3 u 24U = 2 + 4x d- + x at2 = aX2 aX ax4' 

(34 = 6 d 3 + 18x 
dX4 + 9x2 ax5 +X aX6 

expressions which no longer contain the low order derivatives of u with respect to x. 
In what follow, the expressions (4) are used to obtain finite difference replace- 

ments of (3), and the accuracy of these formulas is tested by using them to solve 
the cylindrical heat conduction equation subject to the boundary conditions 

u=Jo (ar) (O < r < 1) at t =O, 

a = 0(r = 0) u = 0(r =1), 

where a is the first root of Jo(a) = 0. This is a perfectly straightforward problem 
and has the theoretical solution 

u = Jo (ar)e- 

3. Explicit Formulas. It has been a feature of numerical solutions of (1) using 
finite differences on a rectangular net equally spaced in the r-direction that the 
solution has been less accurate in the vicinity of the axis than in the remainder 

of the field. This is presumably due to the term _ 'u in (1), which for adequate 

representation by finite differences, requires points closer together in the r-direction 

when r is small. On the axis, of course, when r = 0, the term becomes d2. 

In the (x, t) plane, the rectangular net used to derive explicit replacements of 
(3) has equal spacing in the t-direction given by t = jk (j = 1, 2, 3, * * * ) and un- 
equal spacing in the x-direction given by x = i2h (i = 1, 2, 3, ... ), where h, k are 
constants. The mesh spacing is to some extent arbitrary and is chosen to suit the 
problem to be solved. The spacing suggested appears suitable for the problem 
stated where the only difficult region is in the neighborhood of the axis. It has the 
added advantage that the corresponding points for the r-coordinate are equally 
spaced. 

The following procedure, suggested previously by the present authors [2, 3] 
in the solution by difference methods of other partial differential equations is, used 
to derive optimum four and five point explicit difference replacements of (3). 
Consider initially the points P, Q, R, S in Figure 1 where RP = k, QR = (2i + 1)h, 
RS = (2i - 1)h. If equations (3) and (4) are used to eliminate the time deriva- 
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tives of u, the Taylor expansions of u at points P, Q, S are given by 

i,j+l= u + qA + q(i2 + q)B + q2(2i2 + q)C ... 

i+l,j= u + (2i + 1)A + 4(2i + 1)2B + 1(2i + 1)3C ... 

i_,j = u - (2i - 1)A + 2 (2i - 1)2B - t(2i - i)3C ... 

where u, A, B, C * are the values of u, haX) h2? h3d aX? * * at R. The linear 

combination of the values of u at points P, Q, R, S which eliminates A and B is 

41 -1 1 4i(2i -1) 

+(2-2+ 2 )us-l j '(i = 1, 2, ...* 
[i 2q(~~i 2+q- 1) ) 

and the principal part of the truncation error is 

-q[(2i2 + q)(q _ 2) + *]C, 

where q = k/h. The coefficients on the right hand side of (5) sum to unity, and 
except for the coefficient of ui_,,j when i = 1, are positive for all i if q < (,)12 
Thus errors due to round-off do not grow for values of q below this limiting value. 

It should be noted that if q = 3, the truncation error reduces to - ? at all points 

in the field. A modified formula is used to deal with points on the axis. It is 

(6) Uoj+i = 1(4 - 5q + 2q2) UO,j -2 (q -2) u1j + -j- (2q - 1) U2,j, 

with a truncation error of (3 q2 - 5q + 2)C. This is derived by expanding 
3 

UO,j+l, U1,j, u2,j in terms of u and its derivatives at the point (0, j), and eliminating 
the time derivatives of u by using (3) and (4). 
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If greater accuracy is required, the introduction of a fifth point T where TR = k 
presents little additional difficulty. Proceeding as before, the five point explicit 
formula is 

2 4 3 2 2 

q2+ 12i4 + 12i - 2i - 4i + 1 - 6q2 
vi j+l = t (2i + 1)X 

q2 12i4 - 12i3 - 2i2 + 4i + 1 - 6q2 

V7 + (2i -1) X 
U_ 

16(4 - 32)i4- 8(2q2 + 3)i2 + 2 + 24q4 
(4i2 - 1)X ui,j 

4(3q-2)i2 + (1 -4q + 6q2) 
+ x Ui- (i= 12,.) 

where 

X = 4(2 + 3q)i2 _ (1 + 4q + 6q2). 

This time the coefficients sum to unity and are positive for all values of i if < 
q 

2 (,)112 This stability range is rather more restrictive than necessary, and in fact, 
as is shown later, there is no significant growth of error in a calculation with q = 

0.4. The principal part of the truncation error in (7) is 

[(53- 66q2) 74 - - 4q2) j2 - - q2 + 12q4)] D. 

The modified formula used to deal with points on the axis is 

2 - 5q + 3q2 8 - 9q2 + 6q4 

(8) tUo 2 + 5q + 3q2 UO4j_l + 2(2 + 5q + 3q2) 

4q2(8 - 3q2) q2(1 - 6q2) 

3(2 + 5q + 3q2) Ul - 
6(2 + 5q + 3q2) U24 

with a truncation error of 

24 q - (24 - 117q2+ 108q4) D. 
18(2 + 5q + 3q2) 

This is derived in a similar manner to (6), with the incorporation of the additional 
node (0,j - 1) . 

4. Implicit Formulas. It is a general feature of finite difference methods that 
the maximum time interval permissible in a numerical solution of the heat flow 
equation can be increased by the use of implicit rather than explicit formulas. 

Returning to Figure 1, the optimum four point implicit formula involving the 
values of u at the points Q, R, S, T is 

r 2q(i2 - q- 1)- i, q(-2i2- 2i +2q +1) U+, [1 + 4i2- I 4i(2i + 1))] 

+ q(-2i2+ 2i + 2q + 1) 
4i(2i- 1) Ui_i,j = Ui'j 
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This is obtained in a similar manner to (5) and the principal part of the truncation 
error is 

q[(2i2 - q) (q + 2) - 6]C. 

The values of u at points on the axis are obtained from (6) with j- 1 replacing j. 
The implicit formula (9) is stable if the latent root of minimum modulus of the 
matrix 

1 2q2 q(2q-3) 
- 3 12 

q(2q - 3)1 + 2q(3 - q) q(2q - 11) 
24 15 40 

q(2q - 22 + 2i + 1) 1 2q (j2- 1- q) q(2q - 22 - 2i + 1) 
4i(2i - 1) 4i2 1 4i(2i + 1 

q(-2N2 + 2N + 1 + 2q) 1 + 2q(N2 - i-q) 
4N(2N-1 4N2- 1 

exceeds unity, where N2 = 1/4h. This condition imposes a restriction on q, which 
depends on N (or h). The algorithm of unknown origin (Richtmyer [4], p. 102) 
used frequently to solve the set of equations at each time step in an implicit pro- 
cedure of this type also imposes a restriction on q. In fact it is q < () 1/2 a condi- 
tion which is independent of N, and corresponds exactly with the stability condition 
on q for the explicit scheme (5). Thus it appears that the implicit scheme (9) may 
have no advantage over (5) either in length of permissible time step or in accuracy, 
since the truncation errors are similar for the two formulas. If, however, the set of 
equations at each time step is solved satisfactorily by a method such as simple 
elimination which does not impose a restriction on the size of q the implicit scheme 
(9) may well have an advantage in length of permissible time step over the explicit 
scheme (5). 

The implicit scheme used by Albasiny is the six point Crank-Nicolson replace- 
ment of (1) . It is 

- + - (1 + P)ti,j + 2P (1 --2-) -J+ 

(1) -2- (1 + Ui+,j -(1-p)Ui,j- ( -2 -l,j 

where p = klho2, and the spacings in the r- and t-directions are given by 
r = iho (i = 1, 2, 3, ... ) and t = jk (j = 1, 2, 3, * * * ) respectively. This is not 
an optimum formula and cannot be obtained by the methods advocated in the 
present paper. It is impossible to quote the principal part of the truncation error 
of (10) in a meaningful form, because as shown by (2), all time derivatives of u 

involve at least and 2 .For what it is worth, we quote dr ar 

Pihod3 +i oU2 
3 

1 33dU 6i-, Or3 Si arOt2m24 OtM 
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TABLE I 
Errors on axis (X 109) 

Crank-Nicolson 4 Point 5 Point 

t p q q 

0.4 0.8 1.2 4.0 0.4 2 0.8 0.4 0.8 

0.016 +2,241 +418 0 
0.032 +4,731 +4,678 +663 -2,489 0 +23 
0.048 +7,367 +7,209 +798 0 
0.064 +10,087 +10,036 +864 -2,942 0 +17 
0.080 +12,852 +888 +76 0 
0.096 +15,636 +15,589 +15,508 +884 -3 220 0 
0.192 +32,130 +32,073 +31,977 +626 -3,593 +4 +20 
0.384 +61,546 +62,179 -305 +8 +11 
0.768 +111,763 -3,282 +18 -12 
0.960 +131,325 +131,126 +130,787 +124,648 -5,127 +1,313 -1,079 +23 -25 
1.920 +189,278 +188,798 +180,108 -13,818 +1,905 +3,937 +43 -90 
3.840 +192,136 +191,655 +182,946 -19,330 +1,928 +7,862 +52 -132 
7.680 +97,013 +96,771 +92,391 -11,209 +967 +5,002 +29 -77 

as the truncation error of (10), where no attempt has been made to eliminate time 
derivatives of u using (2). As might be expected, (10) can be used with larger 
time steps but is much less accurate than (5) or (7), particularly near the axis. 

The authors in fact made several unsuccessful attempts to obtain an implicit 
replacement of (3) (or (1)) which was not too unwieldy and gave accuracy, com- 
parable with that given by the optimum explicit formulas developed in the present 
paper, for large time steps. As pointed out previously in discussing formula (9), 
the maximum permissible time step with implicit formulas may be limited not 
only by the usual stability considerations but also by the conditions imposed by 
the method used to solve the set of equations at each time step. 

5. Numerical Results. The problem stated previously is solved numerically 
using optimum explicit formulas (5) and (7) in turn. The results are compared 
with the theoretical solution and the errors on the axis shown at various values of 
the time in Table 1. The calculations are carried out for h = T-o and so eleven 
points including the nodes on the axis and the perimeter are sufficient to cover the 
region in the x-direction. The problem is also solved using the Crank-Nicolson 
six point replacement of (1) with eleven points including the axis and perimeter 
nodes covering the region in the r-direction (ho = 1 W). The errors on the axis are 
also shown in Table 1. 

The time range for each calculation is sufficiently large for the error on the axis 
to have reached a maximum value, and the calculations are carried out for several 
values of the mesh ratio q (or p). The maximum errors are approximately 

Crank-Nicolson 2 X 10-4 (p = 0.4, 0.8, 1.2, 4.0) 
4 Point Explicit 2 X 10- (q = 0.4) 

2 X10-6 (q= ) 

8 X 106 (q = 0.8) 
5 Point Explicit 5 X 10-8 (q = 0.4) 

1.5 X i0- (q = 0.8) 
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There is little doubt that in a problem of this type where there is no singularity 
in the boundary data, the optimum explicit formulas derived in the present paper 
are more accurate and easier to apply than the Crank-Nicolson formula. Also, in 
solving heat conduction problems by finite difference methods, the maximum 
errors occur at small values of the time, and so there is no disadvantage in using 
explicit formulas with small time steps. The advantage of the Crank-Nicolson 
formula in permitting larger time steps cannot be utilized when accuracy is re- 
quired in the time range near the start of the computation, where the errors are 
comparatively large. 

The five point formula (7), is a three-level formula and so starting values are 
required on t = k, as well as on t = 0. These were obtained from the theoretical 
solution, although in most problems, the theoretical solution is not available. In 
such cases, the values on t = k are obtained from the four point explicit scheme 
(5) together with a suitably reduced value of h. 

Finally, it should be pointed out that it has not yet been found possible to use 
formulas (5) and (7) to give results of an accuracy comparable with that achieved 
in the present paper when used to solve a problem with a discontinuity in the 
boundary data. Such a problem is Albasiny's problem of a cooling spinning thread 

line where F(O) 5! 0. The discontinuity in uat r = 1, t = ensures that all 

finite difference solutions lose accuracy in the neighborhood of the discontinuity; 
this loss of accuracy is transmitted across the field with time before eventually 
dying out. 
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