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A Note on Octic Permutation Polynomials 

By S. R. Cavior 

1. Introduction. A polynomial f(x) with coefficients in the finite field GF(q), 
q = p, is called a permutation polynomial if the set {f(a): a E GF(q)} is a per- 
mutation of GF(q). The object of this paper is to extend some known results about 
permutation polynomials of even degree over fields with odd characteristic p. 

We shall frequently use the following theorem which is given by Dickson [1, 
p. 77]. 

THEOREM. If f(x) is a polynomial of degree mn over GF(q), and if m I q- 1, 
then f(x) does not permute GF(q). 

To begin our discussion, we note immediately, by the Theorem, that a quadra- 
tic polynomial cannot permute GF(q). Dickson, in [1], showed that a quartic 
cannot permute GF(q) for q > 7 (although two do for q = 7), and that a sextic 
cannot permute GF(q) for q > 11 (although several do for q = 11.) A natural 
question to ask, then, is whether there is an upper bound for the order of a finite 
field which an octic can permute. 

The present investigation, however, is restricted to the following special octics: 

(1) f(x) = x8 + axt t = 1) 3, 5, 7; a - GF(q). 

The case t 7 can be settled at once, for if f(x) = x8 + ax7, where a ? GF(q), 
then f( - a) = f(O) = 0. That is, f(x) is not a permutation polynomial. With the 
aid of a computer it was discovered that the only polynomials of the form (1) 
which permute GF(p) for p < 500 are 

(2) x8+ax a= ?4,?10;p= 29 
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and 

(3) x8 + ax3 a= 4, 9; p=11. 

2. Dickson's Method. The method we use to decide whether a polynomial of 
the form (1) permutes GF(q) is the one Dickson used in [1]. The basis of it is this 
fact: If f(x) is a permutation polynomial over GF(q), and is raised to a power less 
than q -1, the coefficient of x'-' becomes 0 after reducing exponents by the iden- 
tity x = x. Therefore, to demonstrate that f(x) is not a permutation polynomial, 
one must simply show that when it is raised to some (well chosen) power, xq-1 
does not vanish. 

For example, let us take f(x) = x8 + ax over the field GF(q), q = 8in + 5. 
Raising to the power (in + 4), we have 

(x8 + ax)m+4 = X8m+32 + a + 4 x8m+25 + a2 + 4) x8m+8 

+ a3 m+ 4) 8m+11 + a4 (m + 4) x8m+4 + 

For q > 29 none of the exponents can reduce to 8m + 4 by the identity x' = x. 
Therefore, if f(x) is to be a permutation polynomial over GF(q), the coefficient 
of X8m+4 must be 0; i.e., 

(5) a4 ( + 4)_O(mod p) or p a(m + 4)(m + 3)(in + 2)(m + 1). 

However, we shall show that this is impossible if a 5 0. First, p + in + 1. For 
if p I m + 1, then p l 8m + 8 = pf + 3, and p 3. But p = 81 + 5, so p + 3. 
In a similar way we can show that p + in + 2, p + m + 3, and p + in + 4. So 
p I a. This shows, then, that X8 + ax cannot permute GF(q) if q = 8m + 5 > 29. 

3. Results. Combining the results in (2) and (3) with other results derived by 
Dickson's method, we present the following information which indicates upper 
bounds for the size q of a finite field which the special octics permute. 

The polynomial f(x) = X8 + ax, a E GF(q), does not permute GF(q) if q = 

Sm + 3 or 8m + 7. If q = 8m + 5 the only field permuted is GF(29). 
The polynomial g(x) = X8 + ax3 does not permute GF(q) if q = 8m + 5 

or 8in + 7. If q = 8m + 3, and if some g(x) permutes GF(q), then q must equal 
11 . By the Theorem we see that no octic can permute GF( 112m), and it is an open 
question whether g(x) can permute GF( 112m+1). 

The polynomial h(x) = X8 + ax5 does not permute GF(q) if q = 8m + 3. 
If q = 8m + 5, and if h(x) permutes GF(q), then q = 13'. By the Theorem 
we see that no octic can permute GF(132m), and it is an open question whether 
h(x) can permute GF(132m+l). If q = 8m + 7, and if h(x) permutes GF(q), then 
q = 7f. Again we see by the Theorem that no octic can permute GF(72m), and 
again it remains an open question whether h(x) can permute GF(72m+l). 
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We now present these results in tabular form. 

polynomial q = pn GF(q) which are permuted 

8m + 3 none 
X8 + ax 8m + 5 GF(29) and no others 

8m + 7 none 

8m + 3 GF(11) and possibly GF(11) for odd n 
X8 + ax3 8m + 5 none 

8m + 7 none 

8m + 3 none 
x8 + ax5 8m + 5 possibly GF(13n) for odd n 

8m + 7 possibly GF(7n) for odd n 

In conclusion we might ask whether, for each integer k, there exists a bound 
N = Nk such that if f (x) is of degree 2k over GF(q), f (x) will not permute GF(q) 
if q > Nk. 
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Multistep Integration Formulas 

By A. C. R. Newbery 

A multistep formnula for the approximate solution of an ordinary differential 
equation x' = f(x, t) has the form E i=o aixi = hZi=o bixi'. The formula is 
assumed to be stable, and to have optimum precision subject to this restriction; 
this means that a truncation error of the form FIhk+2X(k+2) (Z) + 0(hk+3) is asso- 
ciated with the formula [1], where x(t) is the exact solution of the differential equa- 
tion and H is a constant, which, like the bi, depends on the choice of the constants 
a, . A closed expression for the bi has already been given in [2, page 39], but it is 
considered worthwhile to tabulate the matrices which transform the as into the 
bi, to give an improved derivation of these matrices, and to extend the argument 
so that predictor coefficients can also be readily calculated. 

The first task is, for a given k, to compute the elements cij of a (k + 2) X k 
'corrector matrix' Ck, such that b = Cka, where b = {bo, bi , bk , H' and 
a = {al, a2, ... 

ak}l. (Note that ao is determined by the consistency condition 
Zok a, = 0.) Using the notation of Antosiewicz and Gautschi [4, page 327] the 
relation between the required bi and the given as is equivalent to the requirement 
that the linear functional Lx(t) _ Z=o [aix(i) - b,x'(i)] should annihilate all 
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