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central q-distribution with the power function of Lord's [2], [31 central t-test (u- 
test). This is done by tabulating q.o5 against an approximation to it which is based 
on the power function of Lord's u-test. The comparison is made for combinations 
m - 1, 2, 4 and n = 3, 4, 6, 8, 10. For each of the fifteen combinations a value of 
Kp is chosen such that a(error of first kind) = j(error of second kind) =.05, 
approximately. Values of q.o5 corresponding to these Kp are compared with the 
approximated values as a rough check on the tabulated values of qa . 

In conjunction with the tables of percentage points, twelve figures are given 
which show the relation (almost linear) between q, and Kp for p ranging from .001 
to .20 (extended to .50 in some figures). For each value of e and m, the relationship 
is shown for various values of n from 3 to 12. These graphs make possible the de- 
termination of q, for other than the six tabulated values of p. 

Several examples are given which demonstrate the application of the non- 
central q-test in industrial sampling inspection. These illustrations indicate that the 
non-central q-test and corresponding tables of percentage points can be very useful 
in such work. 

JOHN VAN DYKE 
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79[LJ.-S. L. BELOUSOV, Tables of Normalized Associated Legendre Polynomials, 
Pergamon Press, Ltd., Oxford, distributed by The Macmillan Company, New 
York, 1962, 379 p., 26 cm. Price $20.00. 

This is a republication in an attractive binding of Russian tables of normalized 
associated Legendre polynomials previously reviewed in this journal (MTAC, 
v. 11, 1957, p. 276, RMT 115). 

For convenience the contents are here summarized again. The polynomials 
Pn (cos 0) considered are related to the associated Legendre polynomials Pnm by 

. . ~2n +1I(n -m)! 1/2 
1 

[1n()2 the normalizing factor [ 2 (n +m)!]_ so thatf [Pn(x)] dx = 1, and are 

herein tabulated to 6D for m = 0(1)36, n = m(1)56, and 0 = 0(2?.5)900. No 
tabular differences are given. 

The introduction has been translated into English by D. E. Brown. 
These useful tables remain the most extensive of their kind published to date. 

J. W. W. 

80[LJ.-O. S. BERLYAND, R. I. GAYRILOVA, & A. P. PRUDNIKOV, Tables of Integral 
Error Functions and Hermite Polynomials, Pergamon Press, Ltd., Oxford, 
England, distributed by The Macmillan Co., New York, 1962, 163 p., 26 cm. 
Price $15.00. 

This volume of the Pergamon Mathematical Tables Series is an English trans- 
lation by Prasenjit Basu of original tables of integral error functions and Hermite 
polynomials published in Minsk in 1961 by the Byelorussian Academy of Sciences. 
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The authors separately tabulate In erfc x = A, in erfc x, where A, = 2nP(1 + n 

and Hn*(x), which is defined in terms of the standard Hermite polynomials by the 
relations H2*(x) = H2n(x)/B2n and H -1(x) = H2n_1(X)/B2n , where B2n = 

(-1)'(2n)!/n!, so that H* (0) = 1. 
In a separate table Io erfc x erfc x is given in floating-point form to 6S for 

x = 0.01(.01)3.50. On succeeding pages appears the tabulation of In erfc x for 
n = 1(1)30, at an interval of 0.01 in x. The precision ranges from 6S initially to 
2S near the end of the table. The upper limit to the argument x depends upon n, 
and varies monotonically from 3.50, when n = 1 and 2, to 1.00 when n = 26-30. 
A preliminary table of An to 9S is given in floating-point form for n = 0(1)30; 
this has terminal-digit errors, beginning with A1, which is simply the well-known 
constant V\/r. The table of Io erfc x is seriously infested with errors, which apparently 
arose from the retention of a fixed number of significant figures instead of a fixed 
number of decimal places. This loss of accuracy was also observed in the table of 
In erfc x, n > 1. Moreover, the table-user will be annoyed to discover that certain 
columns have been filled out with zeros, with an attendant loss of all significant 
figures in those tabulated data. 

Following this is a table of the coefficients B2n which are given exactly for 
n = 0(1)9 and are truncated (without rounding) to 9S for n = 10(1)15. The value 
for B22 contains a more serious error; namely, the sixth most significant figure is 
given as 0 instead the correct digit, 5. 

The second principal table gives 6S values of Hn*(x) for n = 1(1)30, x = 

0(.01)10. The floating-point format is retained for the entries in this table. 
An introduction describes the fundamental properties of the tabulated functions, 

the methods used in calculating the tables, and their arrangement and use. A list 
of ten references includes papers by Hartree and by Kaye that contain related 
tables of in erfc x. 

It is regrettable that the accuracy of these extensive tables does not match the 
very attractive appearance of the binding. 

J. W. W. 

81 [L].-L. K. FREVEL & J. W. TURLEY, Tables of Iterated Bessel Functions of the 
First Kind and First Order, The Dow Chemical Company, Midland, Michigan, 
1962. Deposited in UMT File. 

The authors have continued their study and tabulation of iterated functions, 
which has included the iterated sine (Math. Comp., v. 14, 1960, p. 76), the iterated 
logarithm (ibid., v. 15, 1961, p. 82), the iterated sine-integral (ibid., v. 16, 1962, 
p. 119), and now this report on the iterated Bessel function of the first kind and 
first order. 

Two tables of decimal values of Jl'(x) are presented, as computed on a Bur- 
roughs 220 system, supplemented by Cardatron equipment to permit on-line print- 
ing of the final format. 

Table 1 conisists of 15D values of Ji'(x) corresponding to n = 1(1)10 and 
x = 0(0.2)10. Table 2, comprising the bulk of the report, gives 12D values of 
Jln (x) for n = 0(0.05) 10, x = 0.2(0.2)1.8, and for n = 1(0.05) 10, x = 2(0.2) 10. 


