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1. Introduction. The purpose of this paper is to describe a few finite difference 
schemes for the numerical solution of hyperbolic systems of partial differential 
equations. Our main concern will be the stability conditions for these schemes 
although some of these schemes may be useful, especially for problems involving 
supersonic fluid flow. We will describe numerical experiments designed to check the 
derived stability conditions and also the accuracy of these schemes. 

In Section 2 we will describe the application of the Crank-Nicholson scheme to 
hyperbolic systems. This method is unconditionally stable, however it requires the 
inversion of a block tridiagonal matrix. We describe two modifications which require 
only the inversion of a scalar tridiagonal matrix. We carry out a stability analysis 
which shows that these schemes are unconditionally stable only if the matrix of 
the system is positive definite (supersonic flow in the case of hydrodynamics). 
Results of numerical computations using all these schemes are described in Section 3. 
All our results are for problems in one space dimension. These methods can be gen- 
eralized to two dimensions but we have no analysis to indicate that the generaliza- 
tions will work. In Section 5 we give the results of fluid dynamics computations 
using three versions of the Lax-Wendroff difference scheme. The objective here is to 
determine if it is necessary to write the equations in conservation form in order to 
obtain good results when the flow contains a shock. In Section 6 an application of the 
Lax-Wendroff scheme to the Navier-Stokes equations is described. An empirical 
stability condition is obtained which is a combination of the usual hyperbolic and 
parabolic conditions. In Section 7 an explicit difference scheme related to the Crank- 
Nicholson scheme is given. This is an iterative scheme with a rather peculiar sta- 
bility condition. 

The author is indebted to several staff members at the Couraint Institute of 
Mathematical Sciences for advice and encouragement, especially Professors R. D. 
Richtmyer and H. B. Keller. The computations described herein were all carried 
out on the IBM 7090 at New York University. 

2. Description of the Finite Difference Schemes. In this section we will describe 
some finite difference schemes of an implicit nature. For purposes of comparison we 
will begin with the usual Crank-Nicholson scheme [4]. This scheme is adapted to 
the nonlinear problem by use of a "predictor-corrector" method. We denote the 
hyperbolic system of equations by awl6)- + A(w)awlOx == 0 where A(w) is a 
matrix with real, distinct eigenvalues. If the equations are those of hydrodynamic 
flow for a polytropic gas we have 

(2.1) A (w)= 0 u yp W p 
O0 l/p u Iv- 
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where p, p, and u denote density, pressure and velocity and y is the ratio of spe- 
cific heats. We will use a mesh of equally spaced points (xj, t") where xjl - xj = 

Ax, tn+l -- tn = At and 1 _ j ? M. We use the notation wj = W(Xj, tn), 

w(x + Ax, t) - w(x, t) 
Ax 

= w(x, t) - w(x - Ax, t) 

w(x + Ax, t) - w(x - Ax, t) 
wx = 2Ax 

We shall assume the boundary values w(x1, t) and W(XM, t) are known and con- 
stant. This problem is probably not properly posed. If we were solving the equations 
Ow/Ot + AOw/Ot where A is a constant matrix with distinct positive eigenvalues, 
then we should specify the initial values w(x, 0) and the boundary values w(xi, t) 
but not W(XM , t) as an analysis of the direction of the characteristics will show. 
However, the specification of all dependent variables at both boundary points 
seemed to cause no trouble in our computations. 

The first step in the Crank-Nicholson method is to predict the values of wjn+l by 
the use of an explicit difference scheme [10]. We denote the predicted values by 
w+ and define them by 

+ nn 
w = w - AtA (wn)w,n. 

Here we have suppressed the spatial index j. When written out in full these equa- 
tions are 

wj+ = - AtA(w )(W,+n -WW W )/2Ax. 

Then wn1 is defined by the boundary conditions and the following equations 

n+1 n t At wn + w+ (W n+1l W n. 
2 2 w+) (w+ + W 

The truncation error is O(Ax2 + At2). If the boundary values wln and WMn are given 
then we require the above equations to hold for j = 2, , M -1. When we per- 
form a stability analysis on any of these schemes we will assume the boundary 
conditions are periodic, that is, Wjn = Wn+M . Then we assume the difference equa- 
tions hold for j = 1, 2, , M. 

To solve these equations we use a method given by S. Schechter [5]. We may 
write the system as 

S3Af' + wf - n+1 =jWn X 

where: = At/(4Ax), Aj = A((wjn + wj+)/2) and D isa vector defined by 

Dj = Wj _ O3Aj(W+n1 _-W ) 

Thus the matrix of this system is block tridiagonal. The method is analogous to 
that used for a scalar tridiagonal system. We define matrices Fj and vectors Gj by 
recursion as follows: F1 = I, G1 = D1, Fj = I + f32A jF 71A j, and Gj = 
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Di + fA F7l1Dj1l. Then the solution is obtained by "backward substitution" 
WM = Fm-Gm , WjN - Fj-l(Gj - #3A 1wj+1) 

To use this method we must be certain that the matrices Fj can be inverted 
without difficulty. If the matrix A (w) is constant, then A has a complete set of dis- 
tinct eigenvectors. These are also a complete set for the matrices Fj. If a is an 
eigenvalue of Ai and Xj is the corresponding eigenvalue of Fj, then 1 + 32ae2/k, is 
the corresponding eigenvalue of Fj+1 . Therefore 1 ? Fj ? 1 + a2 for 1 _ j M, 
where a > A fl A fl If the matrices A are all symmetric, then the norm of Fj satis- 
fies the same inequality. In our case the matrices Aj are determined by equations 
(2.1) and are therefore neither symmetric nor constant. However, we had no diffi- 
culty in inverting the matrices Fj. An analysis by the method of von Neumann [4] 
shows this scheme to be unconditionally stable and this conclusion is supported by 
numerical experiments described in the following section. 

We will next define a quasi-Crank-Nicholson (Q-C-N) scheme which is not cen- 
tered in time. We define the lower triangular matrix AL to consist of those elements 
of A on and below the diagonal with zero elements above the diagonal. We define 
Au by Au = A - AL. Then the (Q-C-N) difference scheme is defined by 

(2.2) w = w AtAL(wA)wxf+l - AtA U(wi)w . 

To solve for each dependent variable we need only solve a scalar tridiagonal system 
of equations. Thus the scheme is effectively explicit. This is the reason for splitting 
the matrix into triangular parts. If the matrix A (w) is defined by equations (2.1), 
then this scheme is unconditionally stable for supersonic flow and unconditionally 
unstable for subsonic flow. This will be discussed in Section 4. The truncation error 
is O(At + Ax2). 

We can also define a quasi-Crank-Nicholson scheme which is centered in time. 
The first step is to predict the values of w'+' by the equations 

(2.3) W = Wn- AtA(wn)wxn 

The centered Q-C-N scheme is then defined by the equations 

(3.4) W?+1 = Wn- At 
AL +Wf+1 - 

At 
Au+WX+ - AtA +w4 

where A+ = A ( (w' + w+)/2). The solution of this system is obtained by solving a 
tridiagonal matrix equation for each dependent variable. The truncation error is 
O(At2 + Ax2). In Section 4 we will show that this scheme is unconditionally stable 
for supersonic flow and conditionally stable for subsonic flow, provided that the 
matrix A is given by equations (2.1). 

This centered quasi-Crank-Nicholson scheme was applied to the Navier-Stokes 
equations: 

ap + a, au 
P + u P + p u =0, 

at ax ax 

at axax Pr Rp aX2 3Rax 
?t+uZiidr+ ('y- 1)T~ d = a7d2T+ 3'Y R 1) (d-) 2 

au au 1 aT T ap 4 a2u 
at ax ay 'Ypax 3pR aX2 
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In these equations R represents the Reynolds number, Pr the Prandtl number, and 
T the temperature. In Section 6 we find that the Lax-Wendroff method applied to 
the Navier-Stokes equations yields the following approximate stability relation 

At <min[ 
Ax 3RpAx2 At<m 

J_ul + c' 16_. 

There is a parabolic dependence on Ax. We have not determined a stability criterion 
for the centered Q-C-N method applied to the Navier-Stokes equations. However, 
enough computations were carried out to show that the stability condition depends 
on Ax2 very weakly, if at all. Thus the stability condition is less stringent, especially 
for values of R which are not large. 

It might be possible to use these methods for problems in two space dimensions 
by using alternating direction techniques. For example, suppose we wish to solve 
the system 

-d + A(w) + B(w) =0. 

The finite difference scheme could be 

+= -' _ tALw+- AtA 0W,n- AtB0wo,n 

W n+ wn _ AtAlw+ - AtBLlWWn+l- AtBu'w-+, 

where AO = A(wn) and A' = A((w+ + wn)/2). If this scheme is stable at all, it 
would probably be stable only for supersonic flow. The fact that the truncation error 
is first order, in At may not be a major defect, particularly if the method is used to 
solve for a steady state solution. Perhaps it is possible to devise a scheme which is 
unconditionally stable for both subsonic and supersonic flow which involves nothing 
worse than the solution of scalar tridiagonal matrices. 

3. Results of Numerical Computations. To test these schemes we used a hydro- 
dynamic flow containing a simple rarefaction or compression wave. We applied the 
difference schemes to equations (2.1.). The initial function u(x, 0) was continuous, 
constant around xi and XM and a monotone polynomial in the interval in which it 
was not constant. For example: 

Iu xl x- a 

u(x,0 ) =1 q(x) = uo + bx a (u, - uo) 

Ui b _!! x x< XM 

By varying q(x) it was possible to have u(x, 0) E CO, Cl, C2, or C3(u E C3 means 
u has a continuous third derivative). The initial values p(x, 0) and p(x, 0) were 
computed from the equations below. This produces a simple wave moving on the 
characteristic with slope u + c. In our formulation we could not use the scheme after 
the wave reached the downstream boundary since we assumed U(UM, t) was con- 
stant. 

p(x,O) [1 ? 'Y - 1 (U - uo)2/(y1) p(x, 0) = ?? p(X, 0)o . P(x 0)= P 
iL 2 COP0(,0 
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TABLE I 

Percentage error after 100 time steps for the various difference schemes 

No. of C-N C-N Q-C-N Q-C-N Q-C-N Lax- 
Points (A cen.) (A not cen.) (cen.) (cen.) (not cen.) Wend. 

10 4.4% 4.7% 4.1 % 4.8% 8.8% 2.0% 
20 1.7 1.9 1.6 1.8 5.2 0.71 

100 0.055 0.11 0.047 0.039 0.57 0.014 
200 0.0087 0.042 0.0073 0.0050 0.15 0.0020 

Computation time 15 13 4.4 4.4 1.7 3.8 
time in milli- 
seconds per 
mesh point 

In these equations po, po, co represent the constant state ahead of the wave. The 
exact solution to this problem is easily calculated [1]. 

The results of the computation are shown in Table I. The number of points in 
the first column refers to the number of mesh points used to cover the interval over 
which u(x, 0) is not constant. This determined the value of Ax. The value of At is 
given by At = 0 9 Ax/ (I u I + c) which is the Courant-Friedrichs-Lewy condition 
for stability. The uncentered Crank-Nicholson (C-N) scheme refers to one in 
which the coefficient matrix is not centered, that is: 

wn+1 = wn - AtA(Wn) (win?l+ w2 ') 

In one case the quasi-Crank-Nicholson scheme was run with an initial value u(x, 0) 
which had a continuous third derivative. In the other cases u(x, 0) E c2 but &3u/ax3 
was discontinuous at the head and tail of the rarefaction wave. If the truncation 
error is 0 (Ax2), the percentage error should drop by a factor of eight when the mesh 
spacing is halved. The percentage error given in the table is the maximum percent- 
age error in the variables p, p, u throughout the mesh at 100 time steps. If the trun- 
cation error is to be O(Ax2), we must have u E C3. The flow is a simple rarefaction 
wave with Mach number Mo = 2 ahead of the wave and M1 = 1.75 behind the 
wave. Other runs were made with Mo = 0 and M1 = 0.7. In this case the error was 
less than that shown in the table. The computing time shown at the bottom of the 
table is the time required (in milli-seconds) to compute the solution at a single 
mesh point. Results of computing with the Lax-Wendroff scheme are shown for 
comparison. The equations used in the Lax-Wendroff scheme are written in quasi- 
conservation form (see Section 5). In Table I, "C-N" denotes Crank-Nicholson, 
"Q-C-N" denotes quasi-Crank-Nicholson and "cen." denotes a centered scheme. 
Obviously the Lax-Wendroff scheme is superior in accuracy and computation time. 

4. Derivation of Stability Conditions. We will first derive a stability condition 
for the centered quasi-Crank-Nicholson scheme with the matrix A (w) given by 
equations (2.1). We use the method of von Neumann, that is, we linearize the 
equations and assume a perturbation of the form w- = w(xj, tn) = k' exp (icoxj). 
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Substituting this value for wj' into equations (2.3) and (2.4) we obtain 

kn+1 = {I [I + a AL] [I- d AU] iA} kn 

= Rkn, 

where: = (At sin coAx)/Ax. If we let a = fu/2, then the amplification matrix R 
is given by R = I + 2aF/I(l + ia) where the matrix F is given by 

a ip( -ia) 
u2 u 

F = 0 + a2 _ipu(1l- ia) . 

Lo i(a 2/M2 1) a (1 -ia) i 
pu(l + ia) M2 (1 + ia) 

Here M denotes the Mach number. If we denote the eigenvalues of F by P,j (j 
1, 2, 3), then the eigenvalues of R are (1 + iax + 2a/,uj)/(l + iax). Let zj = 1 + 
ica X 2a/tj ; then by expanding the characteristic equation of F to find an equation 
for ̂  we obtain Z3 = 1-ia, (Zj + Q1) (zi + Q2) -Q3(j = 1, 2) where 

Qi = Y +2 

2a 2(1 -ia) 
Q2 =ac? + M2(1 + i) 1, 

_3 = 4a 2(1 - aI/M2) (1-ia) 
4aQ( M2(1 + ia) 

Then zl + z2 =-(Ql + Q2) = ( - ia) (2 - 4cx2/(M2(1 + ct2) ) and Z1Z2 = ( - 

ia)2. Let zj = aj(1 - ia), then a1a2 = 1 and a1 + a2 = 2 - 4a2/(M2(1 + a 2)). 

The eigenvalues of R are r3 = (1 - ia)/(1 + ia) and rj = zil/(1 + ia) (j = 1, 2). 
Thus I r3 I = 1, and I rj i = I aj I (j = 1, 2). Therefore I rj I < 1 (j = 1, 2, 3) if 
and only if a2 < M2(1 + a2). This follows from the product and sum relations for 
aj. Therefore we have unconditional stability if M > 1. If M < 1, then the in- 
equality a2 < M2(1 + a 2) reduces to 32c2 < 4 + 32u2 or At ? 2Ax/ c2 -u2where 
c is the velocity of sound. This completes the stability analysis. 

We will now analyze the stability of the uncentered scheme defined by equations 
(2.2). Again we use the von Neumann method. The amplification matrix R is 
R = Cl-1C2 where C1 = I + O3AL ,C2 = I - OAu, and 3 = (iAt sin wAx/Ax. We 
first assume that A (w) is constant, symmetric and positive definite. We can then 
prove that a(R) ? 1. The proof is almost exactly the same as that given by Os- 
trowski to prove that the Gauss-Seidel iterations converge [2]. Assume, for sim- 
plicity, that the order of A is three. Let e1 = (1, 0, 0), e2- (0, 1, 0) and e3 = (0, 
0, 1). Let xo be an arbitrary three-dimensional vector, and let [x]i denote the i-th 
component of a vector x. Let x1 = xO + aie1, x2 = x1 + a2e2 and X3 = X2 + a3e3 
where ai is chosen such that [C1xj]j = [C2Xj_1]j(j = 1, 2, 3). It is easy to show that 
C1x3 = C2xO . We continue this process to obtain a sequence of vectors xi such that 
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C1x3j = C2x3j_3. We will show that I xj -> 0 (for :3 # 0) which in turn implies 
lim Rnx0 = 0. Thus we will have proved stability. Since A is symmetric and posi- 
tive definite we can define a norm for complex vextors x by 11 x 11 = x*Ax. We have 
xj+1 = x; + aj+1ekj where 1 < kj < 3. Hereafter we omit the subscript in kj. A 
little algebra will yield 

|| Xj II - fl x | = 2 Re { uj[AXj..l]k} + ajaj akk 

From the definition of xj we have [C1xj - C2x,1]k = 0. From this we have [3AXj]k = 

-af(l- akk). Therefore fl xj+l || - || Xj fl = -ajajakk < 0. This in turn yields the 
convergence of 1I xjfl 11 which shows that aj -> 0. Since [3Axj]k = a,(l - fakk) we 
can prove that xj -* 0. 

If the matrix A is given by equations (2.1) we are no longer able to obtain a 
stability condition by analytic means. However we can compute the eigenvalues of 
the amplification matrix numerically and thus determine a stability condition. 
The difference equation is 

Wn+l = w AtAL(wf)w?+l 
- AtAu(w )W? 

. 

If A (w) is defined by equations (2.1), then the amplification matrix for this scheme 
is 

,1 o______ 1 
1+ia ~~0 1+ja 1 + ia 1 + ia I 

R = 1 + ._gtP. | 

? p(l + ia)2 p(l + ia)2 + + iaj 

where = (At sin coAx)/Ax and a = u. The eigenvalues of R are given by ,/ 
(1 + ia) where t3 = 1 and Ai(j = 1, 2) are the roots of the following quadratic 

A - (2 - 6) j + 1 = 0, , 
~1+ ia 1+ icM 

Note that the eigenvalues of R depend only on ar = /3c and M = u/c. We let X 
denote the absolute value of the largest eigenvalue of R. In Figure 1, X is plotted 
against a for various values of the Mach number M. These graphs indicate that the 
scheme is unconditionally stable for M > 1 and unconditionally unstable for 
M < 1. Numerical computations were performed using this scheme as described 
in Section 3. The flow was a rarefaction wave with M = 2.0 ahead and M = 1.75 
behind the wave. If the value of At was made equal to ten times the value of Cou- 
rant-Friedrichs-Lewy (i.e., At = 10 Ax/(l u I + c)), then there was no sign of 
instability out to 44 time steps. Computations were also performed with a subsonic 
rarefaction wave with M = 0.0 ahead and M = 0.7 behind the wave. With At = 

2Ax/(l u I + c) the density became negative at 61 time steps and when At = 
Ax/(l u I + c) the density was negative at 377 time steps. For small values of At 
the largest eigenvalue of the amplification matrix R is very close to the unit circle, 
therefore instability is slow to develop. 

The eigenvalues of M drop off quite rapidly for supersonic flow according to 
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1.8 

1.5 

M = 0.5 

/ / = 0.1 

; I ~~~~~~~~~~M = .8I 

1 

.5 

cr ~~~~~~~~2 

FIG. 1. Wave parameter a v.s. spectral radius X for Q-C-N scheme (uncentered). 

Figure 1. This suggests that the scheme might produce reasonable results even i 
the flow contains a shock. We tested this scheme on a flow which was initially an 
isentropic compression wave. Eventually the compression wave will produce a 
shock. This provides a test of how the difference scheme will react to the shock. We 
ran the Lax-Wendroff scheme on the same flow for a comparison. The initial com- 
pression wave had a Mach number of 2.53 behind and 1.5 ahead, which produced a 
very strong shock. The computed values of pressure are plotted in Figure 2. Both 
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TABLE II 
Consistency check from the Hugoniot relations 

Lax-Wendroff Quasi-C-N 

Observed CompRteH Observed fCompRuted 

Shock Mach number 3.00 - 2.33 
Pressure ratio 10.4 10.3 10.7 6. 17 
Density ratio 3.84 3.85 5.4 3.12 
Velocity behind 3.70 3.72 3.65 3.11 

schemes were run to 300 time steps (at Ax = 0.05). By printing out the computed 
value of pressure every 40 time steps from 100 to 300 time steps and observing where 
the shock is located we can compute the shock velocity. For both schemes the 
shock velocity is constant within the accuracy of measurement. We know the state 
ahead of the shock; thus we can compute the state behind the shock from the shock 
velocity and the Rankine-Hugoniot relations. The results are given in Table II. 

When Ax is reduced to 0.02 the results from the quasi-C-N scheme do not im- 
prove. The observed shock speed is 2.34 for Ax = 0.02. This lack of improvement is 
to be expected since the state immediately behind the shock is nearly constant. 
Thus the results from the Q-C-N scheme are apparently worthless, although the 
curves in Figure 2 appear reasonable upon casual inspection. 

5. The Lax-Wendroff Difference Scheme. In this section we shall be concerned 
with three versions of the Lax-Wendroff (L-W) difference scheme [6]. One may 
think of the L-W scheme as having an "artificial viscosity" built into it [7]. There- 
fore it works reasonably well on hydrodynamic flows which contain a shock discon- 
tinuity. Two versions of the L-W scheme are based on the equations of hydro- 
dynamics in conservation form in which the dependent variables are mass, mo- 
mentum, and energy per unit volume, (p, e, m) where m = pu and e = .5pu2 + 

p/ (-y -1 ) . The third version is based on the variables (p, p, u). We will test these 
three versions to see how much improvement results from the use of conservation 
variables on flows which contain a shock. 

The first version is exactly that proposed by Lax and Wendroff. We write the 
equations of flow in the form aw/lt + Of/Ox = 0 where w = (p, e, m) and 

f(w) =(m, - 1))e 

We let X = At/Ax and 

(A (w7 ?) + A (wjn)) (f(wJi) - f(wjn)) 

where A denotes the Jacobian of f(w) with respect to w. Then the difference equa- 
tions are 

(5.1) w = wj - - (f(wn?) - f(w ) ) + -- (qj qj-1) i ~~2 + 2 
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8_ 
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Lax W-edro f f 
(quasi-conservation form) 

p4 

2 

0 

8 

6 

Quas i-Crank-Nicholson 

(uncentered) 

p4 

2_ 

0 

0 1 5 6 7 8 9 10 11 12 13 14 

FIG. 2. Pressure after 300 time steps (Ax = .05). 

This difference scheme is itself conservative in the sense that the following relations 
hold. 

M 
+ 

M 
At 

A2 
wj A XEn +j i (fin + f2n - fMu-1 - fM-2) + (q qO. 

j=l j=Z 2 2 
These equations state that the sum of the mass, energy and momentum is the same 
at the two time levels except for the "flux" through the boundary. 
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The second scheme is a slight modification of the first given below. It is not con- 
servative in the above sense; we will say that it is in quasi-conservation form. 

nj8+1 = wjn _ AtXn + 't(At2 
2 

The third version uses the variables (p, p, u). Like the first two versions it is 
based on a Taylor's series expansion of u(x, t), 

(5.2) n?l _ n + A t au At2a2 

To convert this into a difference equation we need difference approximations for 
au/at and a2u/at2. The first we obtain from the flow equations, au/lt -- - Awz where 
A and w are given by equations 2.1. The second we obtain by differentiating the 
equations of motion. We then obtain three equations of the form 

a2p ap au a2u au ap 82p 

A3t2 a ~' 3at ax atax At Ax at- x 

Using the flow equations we obtain difference approximations for the first time 
derivatives in the form 

=p- -ypu? - Upt. 

From the two preceding equations we obtain difference approximations to the 
second derivatives in the form 

62p = 6pux - p(6u)x - 6upx- U(6p)- 

Using equations (5.2) we obtain a "non-conservation" form of the L-W scheme, 
as follows 

n+I n n + t 2 
w =w tA 2 W 

The difference equations (5.1) may be regarded as a difference approximation 
to the parabolic system 

aw aw 2 (2 - + A :x A2 X2W 

where a = At (we have assumed that A is constant) [7]. This suggests that the 
L-NV scheme adds a "viscosity" to the hyperbolic system. However the stability 
of the scheme depends on how this "viscosity" term is differenced. If we replace 
the second derivative by 

W -n 2wj + W> 
4Ax2 

instead of 

W - 2wj + W>n 
Ax2 
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we obtain a new difference approximation for the hyperbolic system which has the 
same order of accuracy as the L-W scheme. However the scheme is unconditionally 
unstable as a routine stability analysis will show (this scheme is equivalent to that 
described in Section 6 with p = 2). 

These schemes were tested for accuracy by the method described in Section 3. 
The solutions were computed for a supersonic rarefaction wave (Mach number 2.0 
ahead and 1.75 behind) and then compared with the analytic solution. The results 
are given in the table below. 

Maximum percentage error at 100 time steps 

Number of Strict Quasi- Non-cons. 
points cons. form cons. form form 

10 1.9% 2.0% 1.6% 
20 .71 .71 .69 

100 .015 .014 .014 

These schemes were tested on flows containing a shock by the method described 
in Section 4. A compression wave was allowed to develop into a shock, the shock 
speed was measured, and the computed state behind the shock was compared with 
that obtained from the Hugoniot relations as a check for consistency. This was done 
for three different cases yielding shocks of varying strength. The results are given 
in Table III. In Figure 3 a graph of p(t300, x) is shown for each scheme. The quasi 
conservation form has less overshoot than the strict conservation form. This was 
first noticed by Dr. S. Burstein in a calculation involving two space dimensions 
[9]. 

6. The Navier-Stokes Equations. In this section we discuss the application of 

TABLE III 
Consistency check of the Hugoniot relations 

Strict Quasi Non-cons. 
cons. form cons. form form 

Comp. from Comp. from Comp. from 
value R-H value R-H value R-H 

Shock Mach No. 1.62 1.62 1.33 - 

Pressure ratio 2.92 2.90 2.92 2.90 2.69 1.90 
Density ratio 2.07 2.07 2.07 2.07 2.17 1.57 
Velocity ratio .841 .837 .841 .837 .905 .483 

Shock Mach No. 2.11 2.11 1.57 
Pressure ratio 5.02 5.00 5.02 5.00 4.32 2.71 
Density ratio 2.82 2.82 2.82 2.82 8.0 1.98 
Velocity ratio 1.36 1.37 1.36 1.37 1.51 .777 

Shock Mach No. 3.00 3.00 1.97 
Pressure ratio 1Q.4 10.3 10.4 10.3 5.14 4.36 
Density ratio ~ 3.84 3.85 3.84 3.85 3.22 2.62 
Velocity ratio 3.70 3.72 3.70 3.72 4.35 1.22 
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2. - 

p 

Strict conservation form 

0. 

2.- 

P Quasi conservation form 

O. 

2 

p 
1. non-conservation form 

O 0 10 1 1 2 1 3 

FIG. 3. Values of pressure computed by Lax-Wendroff scheme after 300 time steps (Ax 
.05). 

the Lax-Wendroff method to the Navier-Stokes equations for a viscous fluid. We 
use the equations below which do not take into account heat conduction. Here R 
is the Reynolds number. 

Op _ au - 4 p 

at Ox Ox 

O. ap_ p p a 4(7 1) (aOu2 

au _ a_ du _ 1 dp +34 a2u 

d9t d9x p d9x 3Rp aX2 
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In order to apply the Lax-Wendroff scheme we must have difference approximations 
for the second derivatives a2p/at2, da2p/at2 , and a2u/at2. From the equations of motion 
we obtain 

a2u a2u 2u du 1 a3p 1 ap dp 4 23U 4 ap a'u 
(62) 2 - - au a- _ _ a 4 a_ 4 a__ 

. adt2 dxdt -t ax p axat p2 at ax 3Rp ax2at 3Rp2 at dX2 

and similar equations for p and p. We let (p, bp, and bu denote the following differ- 
ence approximations for the first derivatives ap/at, ap/at and au/at at time tn. 

nU nU 4 n 

=p p8 -8 u'p2 

=- -unp2" _ 'p'nui + 4 (7-1 ) 

aU- Un8" _1 pn+ 4 
Un 

3u=-uut p ,PI'+ 3Rpn Uxxk 

Using the latter in equations (6.2) we obtain difference approximations 52p, 52p, 

and 6 u for the second derivatives a2 p/at2, a2p/at2, and a2u/at2, 

2u = Un(bU)x - (bU)Uxn - (XP) 
pn 

_ _ n 4 4 b ) _ + 1 (pp)p2 f + 3Rp n 3R(p,) (np)u2 

and similar equations for p and p. The Lax-Wendroff equations are given by 

(6.3) u~n' nu _ AtUni4n Atp n 4 n (At) 2 (2u (6.3) n+ Un_ptur _ -Pi + 3Rpn + I2 
p 3Rp n x? 2 

and similar equations for p and p. In order that the truncation error be O(Ax2) 
the difference approximations used to compute the first derivatives in equation 
(6.3) must be centered, but the difference approximations used to compute 2p, 
(2p, and 62u need not be centered. In the calculations the boundary values of p, p, 
and u, that is, the values at x1 and XM are known and the values for xi, i =2,***, 
M - 1 are computed. Since the second order term in the difference equations 
requires the values at xi-2, xiI, xi, xi +, xi+2 and tn to compute the value at 
(Xi, tn+'), we must modify this term at i 2 or i = M - 1. The modification 
merely requires that certain forward differences be replaced by backward differences, 
or conversely. 

In order to test this scheme we used the same technique that was described in 
Section 3 of this report. That is, we let the initial values of p, p, and u be those in 
a simple compression wave. Of course the flow is now viscous and the analytic 
solution for the inviscid case no longer applies. If the Reynolds number is not too 
large the compression wave will not develop a shock-like structure, but the transition 
will remain gradual. The use of this problem was suggested by a paper of Ludloff 
and Filler [8]. They computed the solution for this problem using difference schemes 
of first order accuracy. 

We are unable to compute a stability criterion for the Lax-Wendroff method as 
applied to the Navier-Stokes equations. We can obtain an empirical stability 
criterion by computing the solution for a compression wave, for various values of 
R, Ax and At. We compute the solution for 100 time-steps and observe the value of 
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TABLE IV 
Empirical determination of the stability condition for the Navier-Stokes equations 

R Ax ~~102 At l02At 102 12_1(R1)X R A\X (stable) (unstable) (Ax/u + c) 102(4) (3p/8) 2 

1 0.05 0.056 0.061 2.1 0.047 
1 0.025 0.014 0.015 1.0 0.012 
1 0.01 0.0022 0.0024 0.42 0.0019 

10 0.05 0.56 0.61 2.1 0.47 
10 0.025 0.14 0.15 1.0 0.12 
10 0.01 0.022 0.024 0.42 0.019 

102 0.05 2.0 2.1 2.1 4.7 
102 0.025 1.0 1.1 1.0 1.2 
102 0.01 0.22 0.24 0.42 0.19 

104 0.05 2.1 2.3 2.1 470. 
104 0.025 1.0 1.1 1.0 120. 
104 0.01 0.40 0.43 0.42 19. 

At for which the computation becomes unstable at fixed values of Ax and R. We 
assume the scheme is stable for a given At if there is no obvious instability after 
100 time steps. The results of the computations are shown in Table IV. The largest 
value of At for which the calculation is stable is given along with the minimum 
value of At for which the calculation is unstable. The simple explicit scheme for the 
heat equation Ou/,t = ia2u/0x2 has the stability criterion At = (2 a) (AX)2. The 
derivative of second order in the Navier-Stokes equations (2.2) has the coefficient 
4Rp. If the Navier-Stokes equations behave as a parabolic system we might there- 
fore expect the stability criterion At = (3Rp/8) (AX)2. If the behavior is hyperbolic 
we expect the criterion At = (1/(u + c))Ax where the maximum value of u + c 
at t = 0 is used. From Table I we see that the behavior is parabolic, that is At \ 

(Ax)2, for R = 1 and R = 10. It is hyperbolic, At A Ax for R = 104. As far as these 
results are concerned we see that the foflowing empirical stability criterion will 
suffice 

At = min [(Ax/(u + c)), (2) (3Rp/8) (AX)2]. 

We are forced to halve the usual parabolic condition. In Table IV the range of At 
in which instability occurs for various Ax and R is shown along with the value of 
At given by the various stability criteria. 

7. An Explicit Difference Scheme. This scheme is based on the Crank-Nicholson 
method described in Section 2. It is an explicit iterative scheme for the differential 
equations Ow/Ot + A(w)Ow/Ox defined as follows. The successive iterates are 
denoted by ?v(s) and there are exactly p iterations at each time step. 

W (0) = Wn 

W(8+1) -Wn - A ?( + w) (s(s) + Wn) 

-n+1 -(p) 
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Here we have suppressed the spatial index j in wj', as usual. We may regard this 
as an iterative method for solving the Crank-Nicholson equations. 

We let w+ be the solution of the Crank-Nicholson equations (assume the matrix 
A (w) is constant and the boundary conditions are periodic), that is 

w+= w + At A(w' +?wxW) 

We will show that lim^,, wjs) = w+ if At < 2Ax/g(A) where a(A) is the spectral 
radius of A. Define ej(s) by e j(s) _ j - wj+. Then ejs) satisfies the equations 

ej (S+l) = At Aej(s) 
(s) ~~~~~(s?) _ At 

We let e(S) denote the vector (el(s), em. The periodic boundary conditions 
(s) (s) (s) (s-1 yield e1 = eM+i . We let (i denote the operator defined by e = Ge 1)* If v is an 

eigenvector of A with eigenvalue a and k is an integer 0 < k ? M - 1, then it is 
easy to see that the vector ej = v exp (i2wxkjAx/(xM+l - xi)) is an eigenvector of 
at with eigenvalue iAt sin (2rk/M)a/2Ax. If we take the set of all such v and k 
then we have a complete set of eigenvectors of G. Therefore lim,8, e(s) = 0 and 

lim8 w ) =w+ if At < for all eigenvalues of A. 

We will now analyze the stability of this scheme. We again define the operator 

a by Gtw = -Awx where w is a vector whose components are the vectors (wi, 2 
WM). The difference scheme can be written t7s?1) = w + az(S + awn. We 

can show by induction that 

w + = [I + 2? + ***+ 2p]w. 

We now perform a stability analysis by the method of von Neumann. Let wjn 
= kneioxi, then 

aswn - t i sin coAx A]swn (i A)8wn 

and 

k [I + 2i,A + + 2(igA)P]kn = Mk#, 

where 

At sin wAx 
Ax 

Therefore the eigenvalues of M are given by 

m = 1+ 2i,ua+ -^ + 2(iua) P 

where a is an eigenvalue of A. A little algebra will yield the following results. 

m = 1 +[1-~iPl(i8a)P?i] I1-ip',ua)p' 



FINITE DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS 17 

Lax-Wendroff 
(quasi-cons. form) 

Iteration Method 
U U 

0 0 

0. 1.0 1.5 0. 1.0 1.5 
x x 

FIG. 4. Velocity computed by two methods when Ax = .05, t = 1.12, shock strength = 

(pi - po)/po = .41. 

If p = 2n + 1, 

2 n ~~~~2,n+2 rl+ (_ 1)n(tta) 2n+21 
m 2 1 + (-1)'4(;a) l [ + (A(a)2+] 

If p = 2n, 

m 12 =1 + (- )f+144(Aa)2n+2 F1 + (-1)n+ (,u4a)2n1 L 1 + (a)2 
It is clear that the method will be stable only if pia| ? 1 or At < 2Ax/a. Note that 
this is the condition for lim,, z,8) = w above. These relations imply that the 
scheme will be stable if p = 3, 4, 7, 8, . and unstable if p = 1, 2, 5, 6, . pro- 
vided At < 2Ax/lo(A). This result has been verified by numerical experiments with 
this difference scheme. This scheme was used to compute the solution for the same 
supersonic rarefaction wave that was used to produce Table I in Section 3. For 
these calculations the value p = 3 was used. The results are given in the table 
below. This scheme was also used on a compression wave which eventually developed 
into a shock. The result is shown in Figure 4. The results for the Lax-Wendroff 
scheme (in quasi-conservation form) are shown for comparison. 

Percentage error after 100 time steps 

No. of points Error 

10 4.2 
20 1.6 

100 .052 
200 .0081 

Computation time in milliseconds 4.7 
per mesh point 

New York University 
New York 3, New York 
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