Bounds on the Truncation Error by Finite
Differences for the Goursat Problem

By A. K. Aziz and B. E. Hubbard

1. Introduction. A common method for obtaining an approximate solution to
the various boundary value problems for partial differential equations is by finite
differences. The fundamental problem concerning such finite difference approxima-
tions is to show that the truncation error (i.e., the difference between the exact
solution and the solution of the approximating finite difference problem) tends to
zero with diminishing mesh size. Further the success of a finite difference method
is related to the possibility of deducing explicit a priori bounds for the solution, or
to the stability of the difference scheme. Various authors have studied the question
of stability and a prior{ estimates connected with finite difference schemes con-
cerning hyperbolic partial differential equations (see e.g. Richtmyer [14], with
references).

In general the main tool used in obtaining estimates for the solution of hyper-
bolic equations is the energy method.

In this paper we obtain explicit bounds in terms of the data of the problem for
the linear and non-linear second order partial differential equation of hyperbolic
type in two independent variables, i.e. linear boundary value problem 2.1, 2.2 and
non linear problem 4.1, 4.2. The present approach is based not on the energy method
but on the method of majorants which is embodied in the statement of theorem 2.1
and its corollaries.

In section 2 we first define a suitable finite difference analogue of 2.1 and develop
the finite difference analogue of Riemann’s function and Riemann’s. formula for
equation 2.1. Making use of this representation of the solution U (z, y) of boundary
value problem 2.9, 2.10 and the majorizing theorem 2.1, together with its corollaries,
we obtain in section 3 explicit bounds of O (h®) for the truncation errors | u (z,y) —
U(Cl?, y) l) ' ux(x, y) - U(Sl?, y)z l) I uy(x, y) - U(x; y)u ,1 I uz-‘u(x, y) - U(Sl?, ?/)XY I1
where u and U denote the solution of 2.1, 2.2 and 2.9, 2.10 respectively. In section 4,
employing the results and techniques of section 3, we obtain a similar bound of
O (#*) for the truncation error E (z, y). for 4.1. Both bounds in section 3 and in
section 4 are of nondecaying exponential nature and this exponential character
makes our bounds rather poor when applied to problems whose solutions have
decaying exponential behavior (i.e., Uy + U+ u+u=0, u(x,0) =uz,
w(0,y) = y,ulx,y) = ze’ +ye ).

Applying Dames [5] criterion for stability, it is easily seen that the finite differ-
ence scheme considered is unconditionally stable.

In section 5 we give a simple numerical example where the bound for the trunca-
tion error is computed.
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2. Finite Difference Analogue. We shall pose a finite difference analogue of
the characteristic boundary value problem given by

2.1) Lu = Uy + au, +bu, +cu=f inR
u(z,0) = ¢ (z)
2.2) u(0,y) =¥
¢(0) =¢(0)

Where R is the first quadrant of the (z,y) plane. Let ) be the set of grid points
(mh, nh); m, n positive integers and let Cy be the boundary mesh points (mh, 0)
and (0, nh). The real number n > 0 is called the “mesh constant”. Any function
W (z,y) which is defined at points of R, + Cj is called a “mesh function”. We
assume that the domain of definition of every mesh function is extended to the
points (mh — %h, nh), (mh, nh — %h), (mh — 3h, nh — 3h) by the following rules.

W (mh — %h, nh) = 3[W (mh, nh) + W (mh — h, nh)]
W (mh, nh — 3h) = 3[W (mh, nh) + W (mh, nh — h)]
W (mh — 3h,nh — 3h) = 3[(W (mh — 3h,nh) + W (mh — 3h, nh — h)]
= 3[W (mh, nh — %h) + W (mh — h,nh — %h)]
LW (mh, nh) + W (mh — h, nh)
+ W (mh,nh — h) + W (mh — h,nh — h)]

By defining W (z, y) at such points as the averages of W (z, y) at nearby points of
R, + C» we make it possible to use the finite difference equivalent of the chain rule
of differentiation. The desirability of this was pointed out by B. Wendroff [20]. At
points of the extended domain of definition of W (z, y) we define the finite difference
equivalent of partial differentiation by

W, y)x=h"W+3hy) — W — 3hy)]
W, y)r = bW,y + 3h) — Wi,y — 3h)].
From (2.4) we see that
Wa,y)xr =W, y)rx=h'Wk,y+ 3h)x— W,y — 3h)xl
='W+ 3hy)r— W — 3yl
='W+ 3hy+3h) — W+ 3hy — 3h)
— W —3h,y+3h) + W — 3h,y — 3h)].
We note that for the mesh functions V (z, y), W (z, y) and m, n integers we have
[V (mh — $h, y)W (mh — 3k, y)lx
2.6) = V(mh — 3h, y)W (mh — 3h, y)x + V (mh — 3h, y)xW (mh — 3h, y)
[V (x,nh — 3h)W (z, nh — 3h)]y
= V(z,nh — 3h)W (x,nh — 3h)y + V (x, nh — 3h) W (x, nh — 3h)

2.3)
( [
[

2.4)

(2.5)
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Let the mesh functions A and B be given at points (z + %h,y) and (z,y + %h)
respectively by
A+ 3h,y) = a(x + 3h,y)
B(z,y + 3h) = b(zx,y + 3h)

where x = mh — 1h,y = nh — %h. Similarly let ® and ¥ be defined on their
respective subsets of C} as

2.7)

<I>'(x) = ¢(z) x = mh
V() =y¢(@y) y=nh

We formulate the following finite difference analogue of the characteristic boundary
value problem (2.1) and (2.2).

LU = Uzy+ AUx + BUy + CU = f(2,y)
z = mh — %h, y = nh — }h; m,n positive integers,
U (mh, 0) = &(mh)
U(0,nh) = ¥ (nh).

In (2.9) A and B are given as averages of the values at the points of (2.7) whereas
C(z,y) and f(z,y) are values at the point (z, y). We see that (2.9) and (2.10) is
a system of linear equations for U (mh, nh) and that in each equation of (2.9) the
mesh function U (mh, nh) is given as a linear combination of U (mh — h, nh — k),
U (mh, nh — k), U(mh — h, nh) and F. Hence (2.9) and (2.10) can be solved
explicitly.

In preparation for deriving a finite difference form of Riemann’s formula we
now introduce a certain Riemann-Stieltjes integral as has been done in elliptic
problems by G. Forsythe and W. Wasow [8]. Let the step functions u (), »(y) be
defined by

(2.8)

(2.9)

(2.10)

w(x) = mh; mh — 3h <z £ mh+ 3h

@.11)
v(y) = nh; nh — th <y £ nh + h.

The Riemann-Stieltjes integral with respect to u (z) is seen to be

(212) [om f(z) du = "i:l f(mh — 3h).

In particular if W (z, y) is a mesh function and we assume that the definition of
W (z, y) is extended in a smooth manner to the entire (z,y) plane then we have

Mh M
(2.13) [ W) du = b3 Wmh — 3h,y).
0 m=1
Likewise the Riemann-Stieltjes integral with respect to v (y).is seen to be
Nh N
(214) [ Way) dv = B3 Wiz, nh — h).
0 n=1

Let £ = Mh. n = Nh; M, N positive integers and assume that W (z,y) and
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V (x,y) are mesh functions such that W vanishes at points of the x and y axes.
From the definition of W (z, y), V (z, y) in the extended domain together with the
chain rule for differences (2.6) we can carry through the usual integration by parts
with differentiation replaced by differencing to obtain

£ 7 3 7
fo du fo AV (2, y) LW (2, y) = fo du fo dW (z, ) Ln*V (2, y)
3
(2.15) - f [V(z,m)x — Bz, n)V(z, )W (z,7) du

n
= [0y — AWV EDIW(EY) d + V(E DWE 7).
In (2.15) we have introduced the finite difference adjoint operator Ls* of Ls which
is given by
(2.16) Li*V(z,y) = Vxyr — (AV)x — (BV)y + CV.

We now define for each P = (£, ) the mesh function V (z,y; P) = V(z,y; & 2)
to be the solution of the finite difference problem

LV (z,y; P) = 0; 0<z=mh—3%h<§¢ and
O<y=nh—3h<n
2.17) V(,n;P)x — B(z,n)V(z,n; P) = 0; 0<z=mh—3%h <%
Vg y; Py —AGEVEYy; P) =0, 0<y=nh—3h<nq
V(P;P) = 1.

Again we observe that V (z, y; P) is given explicitly by (2.17) so that there is no
question as to its existence and uniqueness. Also for V determined by (2.17) when
substituted into (2.15) we have the finite difference form of Riemann’s formula

4 n
(2.18) Wien) = [ du [ V(5800 Wiz, y)
0 0
for mesh functions W (¢, n) which vanish at points of the z-axis and the y-axis. If
W (P) does not vanish on the axes then (2.18) takes the more general form
W(E) 17) = +V(0) O) E; ﬂ)W(O, 0)

+ [ 072, 00% = Bz, 0 (=, 01V (z,0) da
(2.19) |

£ n
+ [ dﬂ f dVV(xy Y, g; n)Lh W(xy y)
0 0

We shall now derive some further finite difference analogues of classical results
concerning the solution of (2.1), (2.2). Finally we shall conclude this section with
a theorem concerning certain majorizing finite difference problems. We first give a
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finite difference form of the function ¢’®. This function arises as a solution of the
differential equation

(2.20) ¥ @) =f @)y@).

The finite difference exponential arises as the solution of the finite difference analogue
of (2.20) as given in the following lemma.
Lemma 2.1. For K (x) given at ¢ = mh; m = 0, 1, --- , M we define the mesh

function &=® as the solution of the difference equation
(2.21) [ @]x = K(z)x &"® ; € = 3%h,3h, -, (M — %)h.

In (2.21) we define
K (mh — th) = i[K (mh) + K (mh — h)]
eh{((mh—%h) - _21_[ ehK(mh) + ehK(mh—h)]‘
Then for £ = mh, e,*® is given by the formula

o
K@ _ K@) 1 4+ ihK(mh — %h)x]
(222) €n = e II [ — %hK(mh — %h)x

Proof. For fixed m we solve (2.21) to obtain

Kemb) _ , Kimh=h) [1 + $hK(mh — %h)x:l
" 1 — 3hK(mh — 3h)x

Solving this recursion formula we obtain (2.22).
We can apply Lemma 2.1 to the boundary conditions in (2.17) to obtain

m=1

€n

1A
Uand

£
V(:l—?, 75 & 77) = €XPn [— /: B(x, n)d“:l z

IIA
3

(223) Vs, g5 & m) = exps [— [ 4 y)du] 7

since V (§,7; &, 7) = L.
A comparison of the series expansion of ¢ and e,” reveals that

2.24) e = e z=mhz=0.

We have the following inequality relating our Stieltjes integral to the Riemann
integral.
Lemma 2.2. If f(x) € C* and f” (x) = 0, then for any positive integer m we have

mh mh
<
(225) [ @ aus [ o) a
Proof. If zy = rh — %h, r an integer, then

(220)  f(@) = flaw) + @) (o — m) + [ :f”(s)(x —£)de.

Hence

rh rh z
@2 [ @) e =nie) + [ do [ @@ -0 a
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Since the second term on the right hand side of (2.27) is positive we see that

rh rh
(2.28) [ 5@ dz = Witz) = [ 5@ du.

Summing the inequality (2.28) over integral values of r yields (2.25).
We have the following lemma regarding differencing with respect to a parameter.
Lemma 2.3. If Wiz, y) 7s a mesh function then for y = mh — ih

y—3h

U)u W(z,y) d#]y = W(y,y + 3h) + £ W(z,y)r du.

Proof.

y—%h

y o y+ih
[ [ W) dn:ly=h [T wayrm [ Wy~
0

y+ih y—3h

=i [ Wyt ) dut [ Wy de = Wl = 4y + 30)

y—%h

y—3h

+ f W(x7 y)Y du.
0

Since we shall be using the method of majorants to bound the ‘“discretization
error” (the difference between the solutions of (2.1) and (2.9)) the following
theorem on majorizing problems for (2.9) is of central importance.

TueoreM 2.1. Let W (z, y) be a solution of the finite difference problem

(2.29) Wxr = CiWx + C:Wy + CsW + C,

at points (mh — %h, nh — %h) where the functions C;(x,y) = 0. We further assume
that

2.50) W (x,0) = 0, W,0)x =0, z=0
' W©O,y) =0, WO,y)r20, y 0.
Finally let
2.31) 1—=8)>0, (1—8)=0
where
b = 3h (Cl + ?’—Ca'i>
4
b = 3h (oz + 303")
4
(232) b = h (cl + %’"’)
50 = 3h <02 + %@

05 = h[C:; W(xa y) + 04]
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Then we conclude that
(2.33) W =0, Wx =0, Wy =0, Wxy =0

at points of R, .
Proof. The theorem is proved by induction. Let x = mh, y = nh be an arbitrary
point of R, . We introduce the notation

a=We,y)x, a=Wky+hx,
=W, y)r, bo=W(E+hyyr, d = W, y).
Our induction assumption is that
(2.34) a =0, bhz0, diz0.
We see that 2.29 can be written in the alternate forms
(1 — &) = a1 (1 4 81) + by + b2 + 85
bo(1 — &) =bi(1 + 682) + 8101 + 8za2 + 85 .

Solving these equations simultaneously under the assumption (2.31) we see that

5154 _ 6164
az<1 03 1—84)_a1<1+81+1—64>

1+52 64
+b1[62+84<1—54)]+65<1+1-—64)

0203 _ 0203
bz(l 54—1_63>—b1(1+62+1__

03
1+61 63
+a1[61+63<1_83>]+65<1+1 —63>°

From (2.35) and (2.34) it follows immediately that

a: = a 2 0; boz2b, 20

(2.35)

and hence that
W(z+ h,y) 20
W(x+ hy+h) =
W(z,y +h) 20
Clearly then W (z + 3k, y + 3h)xy = 0 and the theorem is proved.
We can obtain an explicit upper bound for W (z,y) in the following special
case.
CoRrOLLARY 1. Let W (x,y) satisfy the hypotheses of Theorem 2.1. In addition we
assume that C; are constants and that W (x,0) = W(0,y) = 0. Then W (z,y)
satisfies the inequality

£ n
(2.36) W) £ C4f dxf dy [eh\/"c‘ﬁ{(E—-z)+('1—-z/)}][eh02(5—1)+01(n—u)]
0 0

where
(237) Cs = Cs + 0102 .
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Proof. If we define the function V (z,y) at points & = mh, y = nh by the
equation
(2.38) W (x,y) = V(x,y)e "
we see that V (z,y) is a solution of the finite difference problem
Ver(@,y) = CsV (x,y) + Cien Y © = mh — Lh,y = nh — LA
V,0)=V(0,y)=0

The finite difference Riemann’s function, V*(z, y; & 7), related to the problem
(2.39) as given in (2.17) satisfies the adjoint problem

V* (ID, y; & ﬂ)XY = CEV* (23, Y5 & "7)

(2.39)

(2.40) V@ mEn)x =0
V&g n)y =0
It is easily verified that
(24) V*(@,y; £ n) < e VEIE2Ho

From the finite difference Riemann’s formula (2.18) with L given in (2.39) we
see that

4 n
(242) V(f, 'r]) < 041: dﬂf dv [eh\/"é';((E—z)+(ﬂ—1/)l][eh—(sz+Cw)]
0

The result (2.36) now follows from (2.38) and Lemma 2.2. The substitution
(2.38) and the subsequent bound are motivated by analogous results for the
differential equation (2.1), R. von Mises [17, p. 812].

The following corollary gives the form of the majorizing theorem which we
shall utilize in obtaining bounds on the discretization error.

COROLLARY 2. Let the quantities in Theorem 2.1 have superscripts (1) and (2)
to indicate two distinct finite difference problems. We replace the assumption
C:%@y) 20 by €.z |CP| and (230) by WP, 0)=W?(0,9) =0.
Then 1t follows that

W@y 2 |Wky)|; WP@y)x = | W@, y)x|
w® @, y)r= | w® (@, y)r l; w® (@, y)xr = | w® (@, ¥)xv |

Progf. As in the proof of Theorem 2.1 the proof is by induction. From the
hypotheses of the corollary together with (2.35) and the induction assumption we
see that

W <[ w)_ 16%P T o (; @
laz | = —|53 |—-i———W(1T| lal [ +|51 |

(2.43)

|61(1)54(1)| o [ W @) 1+ ]52(1)‘]
(2.44) T i=Temp) BT 1aT+ B gy

+ 18] (14 L1 Y] < 6
5 T—o)) =%
Similarly

(2.45) [ 67| < B,
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From (2.44) and (2.45) it is clear that

@46) [WP@+hy+h) =Wy [+]a®|+]bE
SWP@+hy+h)

and finally | W3 | £ W follows from the difference equation (2.29).

3. Bounds for the Discretization Error. In Theorem 3.1 we shall obtain an
explicit bound on the discretization error in terms of the data and certain higher
derivatives of the solution. Here corollaries 1 and 2 of Theorem 2.1 form the basis
for the error estimate. Following this we show how to bound the higher derivatives
of u(z, y) in terms of data.

TueOREM 3.1. Let u (z, y) be the solution of (2.1) and (2.2) withe(x) = ¢ (@) = 0
and let U(z,y) be the solution of (2.9) and (2.10). Define

Ki(t,n) = max  |a(z,y)|
ze[0,£],ye[0,9]
K,y (&,n) = Jmax |b(z, ) |
ze [0,z ],yel0,n
(3.1)
Ki(g,,n) = max |c(z,y) |
ze[0,£],ye[0m]

Ki(g,n) 2 max  |Lyu(z,y) |

ze[0,£],¥e[0,n]

Then the discretization error E (x,y) = u(z,y) — U (z, y)- has the bound
£
(3.2) IE(E, 17) I < K4(E, 17) [ dx [ﬂ dy [eh\/a((E—x)+(ﬂ—’ll))][eth(E.ﬂ)(E—z)+K1(E.ﬂ)(u—ﬂ)]
J0 0

where Ky (£, 1) is given by (3.5). For 0 = £ < £,0 < § < 7 the bound for | E (&, ) |
is given by (3.2).

Proof.

By Corollary 1 and Corollary 2 of Theorem 2.1 we see that (3.2) is valid for
any K, which satisfies (3.1).

Before obtaining the bound (3.5) for K, (%, 7) we introduce the notation

(33) ex = max  o(2,y) en= min o(z,y)
ze[0,£1,we[0,n] z£[0,£],y£(0,9]

for an arbitrary function (z,y). Let x = mh — %h, y = nh — %h, then by Taylor’s
theorem
21

I“(x;y)xr_u(x,y)zyl = (3h) 4—!{quzzzIM+4quzzzlu'l'Gqumljl
+ 4| Yony |2 + | wosw |} = a1h2,
|u@, y)x — u@,y).| = %hz{luuzlﬂl + 3| sz |ae + 3 | Uay | a0
34) + |y |u) = Kon,
lu@ y)r — u@y)| £ Kea,
| Hu@ — 3h,y — 3h) +ul@ — 3h,y + 3h)
+a@ + 3hy — 3h) + ul@ + 3hy + )} — wu@ y) = IR e |a
+ 2| Uay |20 + |ty |2} = Kos.
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Certain of the derivatives on the right side of (3.4) can be replaced by O (k*) terms
which involve even higher derivatives of U (z, y). It is now clear that

(35) thu—Lul = hz{a1+ (lalu+ lblu)az'i' lcluaa
’ 3 (| Gen [ae | % |3+ [ by | | 0y |20}

In view of the definition of «; all that remains is to obtain bounds for the higher
derivatives of u (z, y). These will now be bounded starting with the lowest order.

From Frank & v. Mises [17; p. 812] and the method of majorants we see that
the Riemann’s function of the majorizing problem is-given by

V@, y;tn) = LiVBE — 2)(n — y))et w2 Halulry
B=|al|u|blu+t+|c|u-

(3.6)

Hence we have the inequalities

3 L}
|ulu < [o do fo dyV (2, 9; & )| f(z y) |

n £ n
vl s [ V(w660 |+ [ d [ dyVie v & m1 5 0) |
(3'7) 1 14 n
gl = [ @V (o, &,m| fGo,n) | + [ do [ dyVila, us &)l Sz, 9) |
0 0 0

lIA

| @ | [ o a4 |0 fae [y lae 4 [ € Jar [t |ae + [ f [ar -

The functions u,, and u,, are bounded as follows. We write the differential equation
2.1 in the form

| Usy |

Ugy + QU = F — buy — cu = g.
3.8) i g

Uy + bUy = f — au, — cu = 1.
The left side of (3.8, a) can be integrated with respect to y by using the integrating
factor ’

n
(39) FED = oxp [ [ aten d)\:l.
v
This together with the assumption that u,(z,0) = 0 yields
n
(3.10) u(g,n) = fo g(&, y)e’®™ dy.

We have similar integral representation for u, (£, ). Differentiation of (3.10) yields

(8.11) ug(é,n) = foﬂ {g(&, Ype(& 0, 9) + ge(E,9) }e” dy.

By repeating this process for successively higher derivatives and making use of the
integral representations for lower order derivatives, we can express the derivatives
of all orders in terms of the data. We can then apply well known inequalities to
these representations to obtain computable bounds for a; , @2, a3, in (3.4).

We conclude this section with explicit bounds on the error between the first and
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the second order mixed derivatives of u (x,y) and their finite difference counter-
parts of U (z, y).
We see that:

|us(P) — Uz(P) | S |E(P)x | + | us(P) — u(P)x |
(3.12) |uy(P) —U@P)y| S |EP)y| + |uw(P) — u(P)y]
| 4oy (P) — UP)xy| < | E(P)xy | + | Uz (P) — u(P)xv |-

The O(k*) bounds for |u,(P) — u(P)x|, |uy(P) — u(P)y|, and |uzn(P) —
u(P)xy|, in terms of higher derivatives of w(z,y) are given by h’es, h’a; and
h’ay respectively, where a, and o; are defined by (3.4).

To bound | E(P)x |, | E(P)v | and | E (P)xy |, we consider the boundary value
problem

Exy = —AE, — BEy — CE + o (z,y)
E@,0) =E@0,y) =0

where ¢ (2,y) = L'u — Lu and |o(z,y) | < K5, where K; denotes the right-
hand side of (3.5).
From Corollary 2 of section 2 it follows that:

|E@y) | = E*@&,v), |E@ v)x| = E*& y)x,

|E@,y)r| S E @ 9)r, |E@y)xr| < E* @ y)xr

where E* (z, i) is the solution of the boundary value problem.

E* (@, y)xr = CiEx" (2,9) + C:E*(z,y)v + C:E* (&, y) + K,
E*(x,0) = E*(0,y) =0

with C; = maX,y.z | A (z,y) |, C. = max, .z | B(z,y) |, and
C; = max, ez | C (z,y) |- By the transformation

(316) E* (x) y) = E(x> y)ehczz+01y,

(8.15) reduces to

(3.13)

(3.14)

(3.15)

Exy(x, y) = C; E(x; y) + K eh—(czz+cly)

(3.17) _ _
E(z,0) = E(0,y) =0,

with 05 = C1 02 'I: Ca .
Denoting by V (&, 7, z,y) the Riemann function associated with (3.17) and
making use of the symmetry property of the Riemann function [2, p. 454] we have

V@752, 9)xr = CsV &, 752, 9)
(3.18) RO AR
V@, g%y = VE §2,9) = 1
From (2.41) we have
(3.19) V(& §;2,y) < eh\/Féux—i)Hy—ﬁ)l.

V/Ts l(z—2) +@—)]

Now let z(Z, 7;2,y) = ex ,and Z2=2— V(& 7, x,9). It is easily
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seen that

2(Z, 7%, Y)xy = Cs2(X, 52, )
2(:1-;, g; fl-:, y) = eh‘\/c—,&(ﬂ—ﬂ) — 1, Z(i, g, z, g) —_ eh'\/a(z"i) —1.

From (3.20) and Theorem 2.1, it follows that

(3.20)

2) zszl’) z’xrg(),

and hence
V (&, §;2,y) < eV FHD
V@, g2, 9)x < /T en¥ oD
8.21)

V@, 7;2,9)r = VCs eh\/_c_z(z—iﬂ/-ﬂ)

V@& g;r,y)xr < CienY s HD

Now by (2.18), E(,y), E(®,y)x, E(z,y)r, and E(z,y)xr may be written as
z v _
E-(x, y) = st d[.l.f dVV(j, g; x, y)e-(025+01g)
0 (]
- v _ )
E(z,y)x = K;s I:f vV (z, §; =, y)e—(02z+c,y)
o
z v ) -
(3.22) + [ [ 676,75, 0)0 7o
E’(:v, y),, = K; I:[ duf/'(:i, Y; T, y)e—(sz'+C|ﬁ)
o

z v _ ) - -
+ f d#f vV (Z, §; ¢, y)y e €D
(1] (1]

E(CE, y)Xl’ = K; eh—(02z+01y) + Cs E(x; ?/).
From (3.21) and (3.22) it follows that

- z v ‘\/— = - = p
E(z,y) = K;s f dp f dye,y oD m(C23HCD) g
o o

y ~ - z y . } ; ) i
Ex(x, y) =< st dveh“'wzz'i'cwl + \/Csf d""f dve;.v Cg(z z+u—1l)eh (Caz+C19) _ B2
0 ] ]

IIA

z _ . x y ) ) . )
By(z,y) £ Ks f duen™ 1O 4 /T, f du f dveyY TR EHDg —(Crsten _ g
0 0 0

B, v)xr < Ksen ™% + (58, .
Thus from (3.14) and (3.16) we obtain
|E@,y) | < E*(@=,y) < ™ ™™ =m
|E@ y)x| £ E*@y)x < a™ B+ Cb]l =7
323) |E@y)r| S E*@y)r = a8+ Ci8l = v
|E@,y)xv| £ E*@,y)xr S K5 + & [CsBy + C1B2 + C10:81 + C:85)
= V4
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Now substitution of the bounds in (3.23) in (3.12) yields
|uz(P) — U(P)x| £ v2 + Mo, , luy(P) — UP)v| £ vs+ ba,,

(3.24)
| Uy (P) — UP)xy | £ va+ Ko, .

4. General Quasi-Linear Case. In this section we shall consider a method for
approximating the solution of

Uey = (2, Y, u, v, W), (x,y) eR

4.1) V= Us, w= Uy
u(z,0) = u(0,y) = 0.
We assume that f(z, y, u, v, w) satisfies the Lipschitz condition
4.2) | f (=, y, 3,9, ) — f(z,y, %0, w) |
SEK|a—u|l+K|v—v|+K|®—w],

and is bounded for

—oo <y, v,w < ©,

Under these conditions it is known [Diaz, 6] that (4.1) possesses a unique solution.

We introduce a network as before and define the difference quotients as in (2.4).
Again we extend the domain of definition of an arbitrary mesh function to the
centers of squares as averages so that the chain rule for differencing (2.6) is valid.
We define the finite difference analogue of (4.1) to be

Uxy(P) = f(P, U(P), Ux(P), Ur(P)),
4.3) P = (mh + %h,nh + 3h) m,n=0,1,2,3, ---
U(x,0) =U(©,y) =0.
At each square with P given in (4.3) the difference equation becomes
(44) Ul(m + 1)k, (n 4 1)h] = U (mh, nh)
+ B[Ux (mh 4 3h, nh) + Uy (mh, nh + 3h)]
+ WP, U(P), Ux(P), Uy(P)].
Then (4.4) is of the form
(4.5) U (mh, nh) = g[U (mh, nh)]

where from (4.2) ¢ is a continuous function of U (mh, nh). If we assume that h is
so small that

(4.6) 3h[K: + K3 + 3hK;] < 1

then by the contraction mapping theorem we can solve (4.4) for U[(m + 1)A,
(n + 1)h] in terms of U[(m + 1)h, nh], Ulmh, (n + 1)h], and U (mh, nh), through
an iterative process.

The discretization error E(P) = uw(P) — U(P) satisfies the difference in-
equality
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Exy =K:\|E| + K:|Ex| + K;|Ey| + K,
4.7) Ki = Kilu — 9 |u + Ko|%Us — ux|u
+ Ks|uy — uy|u + | %y — uxy |u
at points P = (mh + %h, nh + %h) with
@(P) = Hul(m + 1)k, (n + 1)k] 4 u[(m + 1)h, nh]
+ u[mh, (n + 1)h] + u(mh, nh)}
In addition we note that
E(z,0) = EQ©,y) = 0.
We pose the majorizing problem
Wxr = Ki\W + K:Wx + KWy + K,
W, 0) = W(,y) = 0.

By an obvious modification of the proof of Theorem 2.1, Corollary 2 we conclude
that

4.9) |E|l=W, |Ex| = Wx, |Ey| £ Wy, |Exy | = Wxy.

The following theorem gives the bound on the discretization error in this case.
THEOREM 4.1. Let E = u — U where u and U are the solutions of (4.1) and (4.3)
respectively. Then E has the bound

(4.8)

£ L]
(410) lEl < K4f dx/ dy[eh\/z‘—st(E—z)+(rr—v))]ehKa(E-z)+Kz(n—u)
0 0

where Cs is given by
(4.11) Cs = K1 + K2K3 .

Progf: The theorem follows from (4.9) and Theorem 2.1, Corollary 1.

The bound (4.10) on the discretization error will be explicit once we show how
to bound K, in terms of the data of the problem. At this point we assume that the
partial derivatives of f with respect to w, v, and w through the third order are
bounded. The quantity K, in (4.7) can be bounded in terms of the higher deriva-
tives of u (z, y) as is seen from (3.4). Nowif | f|x = | f(z, ¥, 0, 0, 0)|» and v (z, y)
is a solution of

VUgy = Kw + Kw, + KSvy =+ IflM
v(@,0) =v0,y) =0

then by the method of successive approximations we see that

(4.12)

(413) |u| = v, [u:| = va, luw | = vy, [y | S 02y

Hence we see that bounds for u, . , 4y , Uy , are given by (3.7) where we make the
substitutions

(4.14) ]a|M=K2, IblM=K3, B=K1+K2K3.
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Bounds for the higher mixed derivatives in terms of the known bounds for |« |,

|z |, |y |, | uzy | are obtained by differentiating the differential equation (4.1),

as was done in section 3. To obtain bounds for the higher pure derivatives we use a

variation of the method applied in section 3. We illustrate the method for ., .
From (4.1) we see that

(415) Uzzy = fz + fuuz + fvuzz + fwuzy'
Hence by introducing an integrating factor
Y Y
(416) wnlz ) = [ dngam) exp | = [z, 0)
0 n
where

g@, y) = fo + futz + fotzy
l,y) = flz,y, ulx, ¥), u: (x, y), uy (x, y)].

Now under the assumption that f., f., f» , f» are bounded we can obtain an ex-
plicit bound for u,, . The bounds thus obtained for the higher derivatives allow us
to bound K; in (4.10).

(4.17)

5. An example. Consider the boundary value problem:
Uy @, y) — wyul@, y) = YO — 2
u(@,0) =u(0,y) =0

in the closed square s:{0 < z <1, 0 < y =<1}, which has the solution u = z*%®.
From (3.7) we have

(6.1)

IIA

¢ K 2 2 2 2
[u(g n) [ fo fo [v(z,y; &) [(9 — 2y )"y dy de
| ut, n)e fu = [ [0(E, u; £,m) [(9 — 47 dy da
£ 9
(5.2) + f f |ve(, y; £ 1) [(9 — 2™y")a™y’ dy da
0 0
3
[u(E m)e|n < fo [v(z,n; &) |(9 — 2™")2’E dx

¢ ! 2 2 2 2
+f f [v,(z, y; & 1) [(9 — 2y)z'y dy dz
0 0

where

v(x, Y, £n) = IO['\/I Ty I,,(E — 2)(n — y)] < I,(2) ~ 228
v(& 5 6 m) =v(z,ny 8, y) =1

(5.3) vi(z, y; &) = W—Hg?:z L2V zy [,(¢ — 2)(n — y)]

V1 Z Y2 ~16¥1 =Y
VE—2 VE—2x

IA
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(5.4) w(@ it S YEZE(2) ~ 16 VE-—a

“Vn—y TVi—y
From (5.2) and (5.3) by integration it follows that
lu| < 218;  |u|, |u,| £ 5.36
[Uoy | S 1118 [ tgo |, | Uy | = 25.54
(5.5) [Usoy | | Uoyy | < 25.54; | Usaa | , | Uy | < 54.26
| Uszey | | Uogyy | < 54.26; | Usayy | < 59.08

l uzzz:c | ) I uuwy | é 14:8.88
Now K4(1, 1) appearing in (3.2) is given by
(5.6) Ki(1,1) = K*(oa + o)

where o; and a3 are given by (3.4). We have oy = 11.36, a5 = 9.18, thus from (3.2)
we obtain

£ L
(57 1Bl = 20548° [ [ o,/ Ty [{E= 2) F (1= 9)] do dy < 60.508°

The solution to the finite difference analog of (5.1) was obtained on the com-
puter at the U. 8. Naval Ordnance Laboratory. The calculations were made with
h = 0.1 with the results given in the following table.

x Yy u(z, y) Uz, y) E=u—-U
.2 .2 6.40 X 10-° 6.392 X 10-5 8.0 X 108
.2 4 5.12 X 10— 5.116 X 10— 4.0 X 107
.2 .6 1.728 X 10-3 1.727 X 1073 1.2 X 10-¢
.2 .8 4.096 X 10-* 4.093 X 10-3 2.7 X 10—
.2 1.0 8.0 X 103 7.995 X 10-3 5.2 X 108
4 4 4.096 X 10~* 4.095 X 10~* 1.3 X 10-¢
4 .6 1.3824 X 102 | 1.3821 X 102 3.2 X 108
4 .8 3.2768 X 102 | 3.2762 X 102 6.5 X 10-¢
4 1.0 6.4 X 102 | 6.3988 X 102 1.2 X 10-5
.6 .6 4.6656 X 102 | 4.6649 X 10~2 6.7 X 10-¢
.6 .8 1.1059 X 10! | 1.1059 X 10! 1.3 X 10-°
.6 1.0 2.16 X 10~* | 2.1598 X 10! 2.2 X 10-5
.8 .8 2.6214 X 10! | 2.6212 X 10! 2.2 X 103
.8 1.0 5.12 X 10~* | 5.1196 X 10! 3.7 X 105
1.0 1.0 1.0 9.9994 X 10! 6.2 X 10-5

In this case the a priori bound on the discretization error given by 5.7 is 6 X 107
and the observed maximum error in the table above is 6 X 10~°. The fact that the
error bound is 100 times too large is in part attributable to the crude manner in
which the higher derivatives of u (z, y) have been computed. It is clear that the
higher derivatives should be solved for directly in terms of u, u. , u, for the particu-
lar problem under consideration with inequalities obtained only at the last moment.
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We are indebted to Theodore Orlow and Al Johnson of the U. S. Naval Ord-
nance Laboratory for their kind assistance in the calculation of the above example.

Georgetown University
Washington D.C.

University of Maryland
College Park, Maryland

1. A. K. Aziz & J. B. Diaz, ““On linear hyperbolic equations with initial conditions on
higher derivatives.” (To a;ﬁ)ear )

2. R. CouranT & ILBERT, Methods of Mathematical Physics, Vol. 2, Interscience,
New York, 1962.

3. R. COURANT, K. FriepricHs, & H. LEwy, ‘“Uber die partiellen Differentialgleichungen
der mathematischen Physik,”’ Math. Ann., v. 100 1928, p. 32-74.

4. R. Courant, E. Isaacson, & M. REEs, “On the solution of nonlinear hyperbolic differ-
entlal equations by finite dlfferences,” Comm. Pure Appl. Math. v. 7, 1954, p. 345-391.

T. Dames, “Stability and convergence for a numerical solution of the Goursat
problem ' J. Math. Physws,v 38, 1959, p. 42-67.
6. J. D1az, “On an analogue of Euler- Cauchy polygon method for the numerical solution
of u,,, = f(z, ¥, u, Us , uy),” Arch. Rational Mech. Anal., v. 4, 1958, p. 357-390.

7. K. Friepricas & H. Lewy, “Das Anfangswertproblem einer beliebigen nichtlinearen
hyperbolischen Differentialgleichung,”” Math. Ann., v. 99, 1928, p. 200-221.

8. G. ForsyTHE & W. Wasow, Finite Dzﬁerence Methods for Partial Differential Equations,
John Wiley & Sons, New York, 1960.

H. B. KELLER “On the solution of semi-linear hyperbolic systems by unconditionally
stable methods,” Comm. Pure Agpl Math.,v. 14,1961, p. 447-456.

10. P. D. LAX “On the stability of difference approx1matlons to solutions of hyperbolic
equations with variable coefficients,”” Comm. Pure Appl. Math., v. 14, 1961, p. 497-520.

11. M. LeEes, “Energy inequalities for the solution of differential equatlons,” Trans. Amer.
Math. Soc., v. 94, 1960, p. 58-73.

12. M. LEES “The solution of positive-symmetric hyperbolic system by difference
methods,” Proc. ‘Amer. Math. Soc., v. 12, 1961, p. 195-204.

13. R. MoorE, “A Runge-Kutta procedure for the Goursat problem in hyperbolic partial
differential equatlons » Arch. Rat. Mech. Anal. v. 7, 1961, p. 37-63.

14. R. D. RicHTMYER, ‘‘Difference methods for initial "value problems,”’ Interscience Tracts
in Pure and Appl Maih., "Vol. 4, Interscience publishers, New York, 1957.

15. H. J. STETTER, “On the convergence of characterlstlc finite difference methods of high
accuracy for quasi- linear hyperbolic equations,” Num. Math., v. 3, 1961, p. 321-344.

16. V. TaoMEE, ‘‘Difference methods for two- dimensional mixed problems for hyperbolic
first order systems, " Arch. Rational Mech. Anal., v. 8, 1961, p. 68-87.

17. PuiLipp FRANK & RICHARD VON MISES, Dzﬁerentwl gleichungen der Physik, Vol. 1,
Rosenberg, New York, 1943, p. 812.

18. H. WEINBERGER “Exact bounds for solutions of hyperbolic equations by finite differ-
ence methods,” Proceedmgs of the Rome Symposium On the Numerical Treatment of Partial
Dzﬁerentzal Equations with Real Characteristics, Rome, 1959, p. 88-97.

. H. WEINBERGER, ‘“Error bounds in finite- difference approximations to solutions of
ymmetrlc hyperbohc systems,”J Soc. Indust. Appl. Math., v. 7, 1959, p. 49-75.

=+ B. H. WENDROFF, “On central difference equations for hyperbohc systems,” J. Soc.
Indust. Appl Math., v. 8 1960, p. 549-555.



	Cit r30_c30: 


