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1. Introduction. A common method for obtaining an approximate solution to 
the various boundary value problems for partial differential equations is by finite 
differences. The fundamental problem concerning such finite difference approxima- 
tions is to show that the truncation error (i.e., the difference between the exact 
solution and the solution of the approximating finite difference problem) tends to 
zero with diminishing mesh size. Further the success of a finite difference method 
is related to the possibility of deducing explicit a priori bounds for the solution, or 
to the stability of the difference scheme. Various authors have studied the question 
of stability and a priori estimates connected with finite difference schemes con- 
cerning hyperbolic partial differential equations (see e.g. Richtmyer [141, with 
references). 

In general the main tool used in obtaining estimates for the solution of hyper- 
bolic equations is the energy method. 

In this paper we obtain explicit bounds in terms of the data of the problem for 
the linear and non-linear second order partial differential equation of hyperbolic 
type in two independent variables, i.e. linear boundary value problem 2.1, 2.2 and 
non linear problem 4.1, 4.2. The present approach is based not on the energy method 
but on the method of majorants which is embodied in the statement of theorem 2.1 
and its corollaries. 

In section 2 we first define a suitable finite difference analogue of 2.1 and develop 
the finite difference analogue of Riemann's function and Riemann's formula for 
equation 2.1. Making use of this representation of the solution U (x, y) of boundary 
value problem 2.9, 2.10 and the majorizing theorem 2.1, together with its c6rollaries, 
we obtain in section 3 explicit bounds of 0 (h2) for the truncation errors I u (x, y) - 

U(X, Y) 1, u(x, y) - U(x, Y) x 1, I u(X, y) - U(x, Y) 1, I u.,,(x, y) - U(x, Y) x Y 1, 
where u and U denote the solution of 2.1, 2.2 and 2.9, 2.10 respectively. In section 4, 
employing the results and techniques of section 3, we obtain a similar bound of 
0 (h2) for the truncation error E (x, y). for 4.1. Both bounds in section 3 and in 
section 4 are of nondecaying exponential nature and this exponential character 
makes our bounds rather poor when applied to problems whose solutions have 
decaying exponential behavior (i.e., ux,y + ux + uy + u = 0, u (x, 0) = x, 
u(O,y) = y,u(x,y) =xe + ye-'). 

Applying Dames [5] criterion for stability, it is easily seen that the finite differ- 
ence scheme considered is unconditionally stable. 

In section 5 we give a simple numerical example where the bound for the trunca- 
tion error is computed. 
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2. Finite Difference Analogue. We shall pose a finite difference analogue of 
the characteristic boundary value problem given by 

(2.1) Lu-=u,+ au% + bu, + cu =f inR 

u(x,0) = o(x) 

(2.2) u (0, y) = (y) 

(p(0) =6(0) 

Where R is the first quadrant of the (x, y) plane. Let Rh be the set of grid points 
(mh, nh); m, n positive integers and let Ch be the boundary mesh points (mh, 0) 
and (0, nh). The real number n > 0 is called the "mesh constant". Any function 
W (x, y) which is defined at points of Rh + Ch iS called a "mesh function". We 
assume that the domain of definition of every mesh function is extended to the 
points (mh - -h, nh), (mh, nh - 2h), (mh - 2h, nh - ih) by the following rules. 

W(mh - 'h, nh) = J[W(mh, nh) + W(mh - h, nh)] 

W(mh, nh - 'h) = [W(mh, nh) + W(mh, nh - h)] 

W (mh - h, nh - 1h) = 2 [W (mh - 2h, nh) + W (mh - h, nh - h)] 
(2.3)2 
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)= [W(mh, nh - h) + W(mh - h, nh - 2h)] 

= '[W(mh,nh) + W(mh - h,nh) 

+ W(mh, nh - h) + W(mh - h, nh - h)] 

By defining W (x, y) at such points as the averages of W (x, y) at nearby points of 
Rh + Ch we make it possible to use the finite difference equivalent of the chain rule 
of differentiation. The desirability of this was pointed out by B. Wendroff [20]. At 
points of the extended domain of definition of W (x, y) we define the finite difference 
equivalent of partial differentiation by 

W(x, y)x = h '[W(x + lh, y)- W(x - h, y)] 
(2.4)22 

W(x, y) y = h '[W (x, y + 'h) -W (x, y -h) 

From (2.4) we see that 

W(x, y)XY = W (x, y) Yx = h-'[W (x, y + 4h)x - W (x, y -h)x] 

= h-[W(x + h, y)y - W(x - 'h, y)y] 
(2.5)22 

h-2[W(x+ h,y+ h) - W(x+ h,y - Ah) 

- W(x - 'h, y + 'h) + W(x - 'h, y -h) 

We note that for the mesh functions V (x, y), W (x, y) and m, n integers we have 

[V(mh - 'h,y)W(mh -h,y)]x 

V (mh - 'h, y) W (mh - Ih, y)x + V (mh - 1h, y)xW (mh - 4/h, y) 
(2.6)2222 

[V (x, nh - lh) W (x, nh -h)]y 

- V (x, nh-4h) W (x, nh-4 h) y + V (x, nh -h) yW (x, nh- ih) 
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Let the mesh functions A and B be given at points (x + 2h, y) and (x, y + Ih) 
respectively by 

A (x + 'h, y) =a (x + h, y) 
(2.7)22 

B(x, y + .1h) =b (x, y + 2h) 

where x = mh - lh, y = nh - Ih. Similarly let b and ' be defined on their 
respective subsets of Ch as 

b(x) = o(x) x = mh 
(2.8) 

( (y) = +t(y) y = nh. 

We formulate the following finite difference analogue of the characteristic boundary 
value problem (2.1) and (2.2). 

LhU Uxy + AUx + BU + CU = f (x, y) 
(2.9) 

x = mh - h, y = nh - Ih; m, n positive integers, 

U(mh,O) = (mh) 

U (0, nh) = k (nh). 

In (2.9) A and B are given as averages of the values at the points of (2.7) whereas 
C (x, y) and f (x, y) are values at the point (x, y). We see that (2.9) and (2.10) is 
a system of linear equations for U (mh, nh) and that in each equation of (2.9) the 
mesh function U (mh, nh) is given as a linear combination of U (mh - h, nh -h), 
U(mh, nh - h), U(mh - h, nh) and F. Hence (2.9) and (2.10) can be solved 
explicitly. 

In preparation for deriving a finite difference form of Riemann's formula we 
now introduce a certain Riemann-Stieltjes integral as has been done in elliptic 
problems by G. Forsythe and W. Wasow [8]. Let the step functions ,u(x), v (y) be 
defined by 

,(x) = mh; mh- h < x < mh + Ih 
(2.11)22 

v(y) = nh; nh - -h < y < nh + 'h. 

The Riemann-Stieltjes integral with respect to , (x) is seen to be 
mh M 

(2.12) f f(x) d,u = h , f(mh-4h). 

In particular if W (x, y) is a mesh function and we assume that the definition of 
W (x, y) is extended in a smooth manner to the entire (x, y) plane then we have 

Mh M 

(2.13) W(x, y) d,u = h Z W (mh - 'h, y). 

Likewise the Riemann-Stieltjes integral with respect to v (y) is seen to be 
Nh N 

(2.14) fNw(x y) dp = h N TV(x, nh-'h). 
Let M N MNptviera aseh W(yn=1 

Let =Mh. 77 = Nh; M, N positive integers and assume that W (.x, y) and 
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V (x, y) are mesh functions such that W vanishes at points of the x and y axes. 
From the definition of W (x, y), V (x, y) in the extended domain together with the 
chain rule for differences (2.6) we can carry through the usual integration by parts 
with differentiation replaced by differencing to obtain 

f d,u f dvV(x, y)LhW(X, y) f d, f dvW(x, y)Lh*V(x, y) 

(2.15) -f [V(x, 7) - B(x, 77)V(x, -i)IW(x, -) d,u 

- f [V( , y)y - A(t, y)V(t, y)]W(t, y) dv + V(%, )W(U, nq). 

In (2.15) we have introduced the finite difference adjoint operator Lh* of Lh which 
is given by 

(2.16) Lh*V(x, y) _Vxy- (AV)x- (BV)y + CV. 

We now define for each P = (t, 7) the mesh function V (x, y; P) = V (x, y; (, q) 
to be the solution of the finite difference problem 

Lh*V(x, y; P) = O; O<x=mh-h< t and 

0 < y = nh - -1h < 77 

(2.17) V(x, n; P)x - B(x, )V(x, 7; P) = 0; 0 < x = mh - 1h < 

V(t, y; P)y - A (, y) V (, y; P) = 0; 0 < y = nh - .1h < q 

V(P;P) = 1. 

Again we observe that V (x, y; P) is given explicitly by (2.17) so that there is no 
question as to its existence and uniqueness. Also for V determined by (2.17) when 
substituted into (2.15) we have the finite difference form of Riemann's formula 

(2.18) W(U, n) = f d. f dvV(x, y; ,)Lh W(x, y) 

for mesh functions W(t, 7 ) which vanish at points of the x-axis and the y-axis. If 
W (P) does not vanish on the axes then (2.18) takes the more general form 

W(,= + V(0,O; 7,) W(0,) 0 

+ f [W(x, o)x - B(x, O)W(x, O)]V(x, O) d1u 

(2.19) n 
+ [W(0o y)y - A(0, y)W(O, y)IV(O, y) dv 

+ f dt f dvV(x, y; i, n)Lh W(X, y). 

We shall now derive some further finite difference analogues of classical results 
concerning the solution of (2.1), (2.2). Finally we shall conclude this section with 
a theorem concerning certain majorizing finite difference problems. We first give a 
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finite difference form of the function ef(x) This function arises as a solution of the 
differential equation 

(2.20) y' (x) = f(x)y (x). 

The finite difference exponential arises as the solution of the finite difference analogue 
of (2.20) as given in the following lemma. 

LEMMA 2.1. For K(x) given at x mh; m = 0, 1, *-, M we define the mesh 
function eh'(') as the solution of the difference equation 

(2.21) [ehK(x)] = 
K(x)X 

ehK(x) ; x = 
-1h, 32h, ... , (M -!)h. 

In (2.21) we define 

K(mh - h) = [K (mh) + K(mh - h)] 

e(mh-jh) = 1[ehK(mh) + e K(mh-h)] 

Then for x = mh, eh K(x) is given by the formula 

(2.22) eh = eh HI 1 + 2hE(mh- h)X] 
"Li - 1hK(mh - ') 

Proof. For fixed m we solve (2.21) to obtain 

K(mh) K(mh-h) [1 
+ 1hK(mh - 'h)x L = e L1- 12hK(mh-. 1-h)x 

Solving this recursion formula we obtain (2.22). 
We can apply Lemma 2.1 to the boundary conditions in (2.17) to obtain 

V(X1 7; 7,) = exph [- f B(x, n)du 

(2.23) V(ty; ,q) = exPh L A( ,, y)dv] 

since V( , q; ,') = 1. 
A comparison of the series expansion of ex and ehx reveals that 

(2.24) ex < ehx x = mh 0. 

We have the following inequality relating our Stieltjes integral to the Riemann 
integral. 

LEMMA 2.2. If f (x) E C2 and f" (x) _ 0, then for any positive integer m we have 

rmh rh 

(2.25) fh(x) d, _ f(x) dx. 

Proof. If xo = rh - 'h, r an integer, then 

(2.26) f(x) = f(xo) + f`(xo) (x - xo) + fX (x -) dS. 
xo 

Hence 
rh rh x 

(2.27) ff(x) dx = hf(xo) + J dx] f"(l)(x -) dt. 
rh-h rh-h zo 
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Since the second term on the right hand side of (2.27) is positive we see that 
rh rh 

(2.28) fh(x) dx > hf(xo) f f(x) d,. 
rh-h rh,- 

Summing the inequality (2.28) over integral values of r yields (2.25). 
We have the following lemma regarding differencing with respect to a parameter. 
LEMMA 2.3. If W(x, y) is a mesh function then for y = mh -h 

y ~~1y-1h2 
W(x, y) d,J = W(y, y + lh) + W (x, Y)Y d,. 

Proof. 
- V _ V~~~~~2+1h Vy-ih [ 

W(x, y) d,] = h1 i W(x, y + lh) d,u 
- W(x, y - h) di 

y+-Ih y-lh2 

h-1 W (x, y + lh) d,u + WJ(x YhY d, = W(yW-(h h, y + lh) 
V-ihO 

y-lh2 

+ W(x, y)y dM. 

Since we shall be using the method of majorants to bound the "discretization 
error" (the difference between the solutions of (2.1) and (2.9)) the following 
theorem on majorizing problems for (2.9) is of central importance. 

THEOREM 2.1. Let W (x, y) be a solution of the finite difference problem 

(2.29) WXY = CIWX + C2WY + C3W + C4 

at points (mh - 2h, nh - 2h) where the functions Ci (x, y) > 0. We further assume 
that 

W(x,O)0, W(x,0)rO0, xO0 

(2.30)0W(0,y)O 0, W(A,y)y-0, y _0. 

Finally let 

(2.31) (1-83) > 0 (1-84) > 0 

where 

= h (C, + 34) 

82 = 2h (C2 + 4h) 

(2.32) 
33 

= lh C, + C) 

84 = 2h (C2 + 4 

85 =h[C3W(x,y) + C4]. 
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Then we conclude that 

(2.33) W> 0, Wx > 0, WY > 0, WXY > 0 

at points of Rn . 
Proof. The theorem is proved by induction. Let x = mh, y = nh be an arbitrary 

point of Rh . We introduce the notation 

al=W(x,y)x, a2=W(x,y+h)x, 

b1= W(x,y)Y, b2= W(x+h,y)y, di= W(x,y). 

Our induction assumption is that 

(2.34) a, > 02 b O > 0, di 0. 

We see that 2.29 can be written in the alternate forms 

a2(1 - 83) = a,(1 + 81) + 82b1 + 84b2 + 85 

b2 (1 - 84) = b1 (1 + 82) + ial1 + 83a2 + 85 . 

Solving these equations simultaneously under the assumption (2.31) we see that 

a2 (1 - 3-1 814) =a, (1 + 1+ 18_4) 

(2.35) ++4(1 
- 4)] +8(1+ 1 8) 

b2 1-84- 8283 =bi (1 + 2 + 82683 

+ a, [1 + 3 Q1 + S)] + 85 (1 + 1 _ 83) 

From (2.35) and (2.34) it follows immediately that 

a2 > a, > 0; b2 _ b1i 0 

and hence that 

rW(x + h, y) _ 0 
W(x + h, y + h) _ 

W(x, y + h) > 0 

Clearly then W (x + 1h, y + 'h)x y> 0 and the theorem is proved. 
We can obtain an explicit upper bound for W (x, y) in the following special 

case. 

COROLLARY 1. Let W (x, y) satisfy the hypotheses of Theorem 2.1. In addition we 
assume that Ci are constants and that W (x, 0) = W (0, y) = 0. Then W (x, y) 
satisfies the inequality 

(2.36) W(, r) ? C4 dx f dy [ehVc:{ (x X+(7' 8[eh C 2-X) + C 

where 

(2.37) C5 = C3 + C1C2 
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Proof. If we define the function V (x, y) at points x = mh, y = nh by the 
equation 

(2.38) W(x, y) = V(x, y)ehC2z?ly 

we see that V (x, y) is a solution of the finite difference problem 

Vx Y(x, y) = C5V(x, y) + CSeh-(c ,+cly) x = mh - -h, y = nh- -h 

(.9V(x,0) = V(0,y) = 0 

The finite difference Riemann's function, V* (x, y; {, n), related to the problem 
(2.39) as given in (2.17) satisfies the adjoint problem 

V* (x, y; , Y = C5 V* (x, y; {, i) 

(2.40) V* (x, n; ,)x =0 

V* U, y; 8)r -O 

It is easily verified that 

(2.4) V* (x y; i, ) < eh 

From the finite difference Riemann's formula (2.18) with Lh given in (2.39) we 
see that 

(2.42) v( , n) _ C4 dy f dv [ehcV{(t x)+(1 y)}][eh-(c2?+cly)] 

The result (2.36) now follows from (2.38) and Lemma 2.2. The substitution 
(2.38) and the subsequent bound are motivated by analogous results for the 
differential equation (2.1), R. von Mises [17, p. 812]. 

The following corollary gives the form of the majorizing theorem which we 
shall utilize in obtaining bounds on the discretization error. 

COROLLARY 2. Let the quantities in Theorem 2.1 have superscripts (1) and (2) 
to indicate two distinct finite difference problems. We replace the assumption 
Ci(l) (x, y) > 0 by C,(2) > I Ct(1) I and (2.30) by W(t) (x, 0) = W(t) (0, y) = 0. 
Then it follows that 

W(2) (x, Y) > I W? (X, Y) I; W(2) (x, Y)x _ I W1 (x, Y)X 
(2.43) W(2) (X, Y) Y-l W>()(X, y) Y; W(2) (X, Y)Xy > Wi)(X, Y)xy 

Proof. As in the proof of Theorem 2.1 the proof is by induction. From the 
hypotheses of the corollary together with (2.35) and the induction assumption we 
see that 

Ia21 _ 1[1 - 1 154(1)11 _ {a l ( 1(1 1 

(2.44) + 131()34(1)1) + I b'(l) I [I52'j1)1 + 14(1) 1 4 132,'1) 1 

+ j55(1j (i + 15411 2 
+ 165MI' (1 + I al <l)) a2 . 

Similarly 

(2.45) 1 b2(1) 1 < b2(. 
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From (2.44) and (2.45) it is clear that 

(2.46) I W('(x + h,y + h) I W()(x,y) I + I a,(' + I b"(2) 

< W(2) (x + h, y + h) 

and finally I Wx(I < W(2) follows from the difference equation (2.29). 

3. Bounds for the Discretization Error. In Theorem 3.1 we shall obtain an 
explicit bound on the discretization error in terms of the data and certain higher 
derivatives of the solution. Here corollaries 1 and 2 of Theorem 2.1 form the basis 
for the error estimate. Following this we show how to bound the higher derivatives 
of u(x, y) in terms of data. 

THEOREM 3.1. Let u(x, y) be the solution of (2.1) and (2.2) with. p(x) = *t(y) = 0 
and let U(x, y) be the solution of (2.9) and (2.10). Define 

K1(t, r% ) = max ja(x, y) 
xe [lO,],ye [O,tj] 

K2(, X6- max jb(x, y) 
(3.1) xe[O,U],Ye [O,O] 

K3(,) - max jc(x, y) 
xe [O,e],Ye [0,t] 

K4% 77) max jLh U(X, Y) 
xe [O,Z],ye [O,n] 

Then the discretization error E (x, y) = u (x, y) -U (x, y) has the bound 

(3.2) jE({, 7) | _ K4(%, r) f dx f dy [eh Q-X) + (7)[eh 2QtX)Q-X)+R1Q07)(Y-7)] 

where K4 (t, -0 is given by (3.5). For 0 ?< x ? , 0 < y the bound for I E (x, y) 
is given by (3.2). 

Proof. 
By Corollary 1 and Corollary 2 of Theorem 2.1 we see that (3.2) is valid for 

any K4 which satisfies (3.1). 
Before obtaining the bound (3.5) for K4 (Q, -0 we introduce the notation 

(3.3) (PM = max 'p(x, y) Pm = min sp(x, y) 
xe [O,e] e [Y0,'7] xe[?O,t],vOE ,0t] 

for an arbitrary function (x, y). Let x = mh - 2h, y = nh - 2h, then by Taylor's 
theorem 

| U(x, Y)xY - u (x, Y)XV I < (2h) 24 {j | U I M + 4 UXXXX I M + 6 | uxxya lAw 

+ 4 | uxyyy I M + j UVVVV I M} = alh 

| u(x, y)x - u (x, y)x < 'h { | M + 3 j uXXy IM + 3 1 uxyy IM 

(3.4) + I uYYy IMl = h2i 

ju(x,y)y - u(x,y)< h2a2, 

If u(x - jh, y- h) + u(x - h, y + Ih) 
+ a(x + 2h,y - ah) + u(x + 'h,y + 2h)} - u(x,y) < Ih2{Uxx IM 

+ 2 | uxy IM + I uWy M} = h a3 
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Certain of the derivatives on the right side of (3.4) can be replaced by 0 (h2) terms 
which involve even higher derivatives of U (x, y). It is now clear that 

I Lhu- Lu | h2{a, + (I a Im + I b Im)a2 + I C fma3 

+ j(I axx Im A ux IM + I byV|M ImU ) I u )}. 
In view of the definition of a, all that remains is to obtain bounds for the higher 
derivatives of u (x, y). These will now be bounded starting with the lowest order. 

From Frank & v. Mises [17; p. 812] and the method of majorants we see that 
the Riemann's function of the majorizing problem is given by 

(3.6) V(x, y; t, 'I) = Io(2e/Mx(a - x)(1 - ) -x)+laM(-y 

3 
=I a lM b IM + Ic IM. 

Hence we have the inequalities 

I U jM _ f dx dyV(x, y; I, n)jf(x, y) I 

I uS JI _ f dyV(t, y; j, r7) f(I, y) I + f dx f dyV (x, y; I, 77)If(x, y) I 
(3.7) 

I (37 IM : dxV(x, )I; i f(x, r) I + f dx dyV,,(x, y; ,I )Jf(x, y) I 

I UxV Im < I a IM I US IM + I b IM I Uy IM + I C, IM |U ImU + I f IM . 
The functions u, and uyy are bounded as follows. We write the differential equation 
2.1 in the form 

(3-8) 
~~UxV + au., = f - buy -cu _g. (3.8) 
uxv + buy = f - au - cu1. 

The left side of (3.8, a) can be integrated with respect to y by using the integrating 
factor 

(3.9) e exp[ a(t, X)dX]. 

This together with the assumption that u, (x, 0) = 0 yields 

(3.10) ue(U, 7) = fg, Oy)eP(etY) dy. 

We have similar integral representation for uq (t, w). Differentiation of (3.10) yields 

(3.11) uee(I, w) = f {g(t, y)pe(t, w, y) + ge (, y) }e? dy. 

By repeating this process for successively higher derivatives and making use of the 
integral representations for lower order derivatives, we can express the derivatives 
of all orders in terms of the data. We can then apply well known inequalities to 
these representations to obtain computable bounds for a, , a2, a3, in (3.4). 

We conclude this section with explicit bounds on the error between the first and 
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the second order mixed derivatives of u (x, y) and their finite difference counter- 
parts of U(x, y). 

We see that: 

ux (P) -Ux (P) < E (P)xj + ux (P) -u (P)xj 

(3.12) ju (P) U(P) j E (P) y + fu.(P)- u(P) y 

juxv(P) -U(P)xy| < I E(P)xyl + I uxy(P) -u(P)xyj. 

The 0(h2) bounds for I u%(P) - u(P)x 1, I u.(P) - u(P) 1, and I u, (P) - 

u (P)s yj, in terms of higher derivatives of u (x, y) are given by h2a2, h 2a2 and 
h2a, respectively, where a2 and a, are defined by (3.4). 

To bound I E (P)x xI E (P) y I and I E (P)xy 1, we consider the boundary value 
problem 

Exy = .-AEx - BEy - CE + oa(x, y) 

E(x,0) = E(0,y) = 0 

where a (x, y) = L u - Lu and a- (x, y) I < K5, where K5 denotes the right- 
hand side of (3.5). 

From Corollary 2 of section 2 it follows that: 

3E(x,y)I <E*(x,y), IE(x,y)xl ?E*(x,y)x, 

IE(x, y) y I < E* (x, y) y, I E(x, y)xy? < E* (x, y)xy 

where E* (x, y) is the solution of the boundary value problem. 

E* (x, y)xy = CiEx* (x, y) + C2E* (x, y) y + C3E* (x, y) + K5, 

(3.15) E* (x, 0) = E* (0, y) = 0 

with C, = maxx,YeR I A (x, y) 1, C2 = maxx,YeR I B (x, y) j, and 
C3 = maxx.yeR I C (x, y) j. By the transformation 

(3.16) E* (x, y) = E(x, y)ehC2+1Y, 

(3.15) reduces to 

ExY(X, y) = C0 E(x, y) + KF eh-(c2x+clY 

(3.17) E(x,O) = E(O,y) = 0, 

with C5 = C1 C2 + 03. 
Denoting by V (x,,x, y) the Riemann function associated with (3.17) and 

making use of the symmetry property of the Riemann function [2, p. 4541 we have 

V(xy x, y)xy = CsV(, y; x, y) 
(3.18) 

(3.1y;8) = V(x,y;x,y) = 1. 
From (2.41) we have 

(3.19) V(,; x, y) _ eh. 

Now let z(x, y; x, y) = eh , and = z - V(x,,x,y). It is easily 
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seen that 

(x,I ; x, y)xy = C6z (x, y; x, y) 
(3.20) 

2 (xI ; xI y) = eh - 1, z (,, x, y) = eh - 1. 

From (3.20) and Theorem 2.1, it follows that 

z, zx, , zZy _ 0, 

and hence 
V (X, y; x, y) <eh(+ 

V(x, y;x, y) x VC6eh 
(3.21) 

V (Y, y; XI y) y < eh 

V (X, ; x, y)xy < C6ehv(x-2+/ 

Now by (2.18), E(x, y), E(x, y)x, I(x, y)y, and E(x, y)xy may be written as 
x v 

E(x, y) = K6 df i dvV(x, y; x, y)e-(C2:+Cl) 

E(x, y)x = K6 fdvV(x, y; x, y)e-(C2z+ClY) 

)+ f cl f dvV(x, y; X, y)x e-(C2'+Cl)] 

(3.22) 

E(x, y)y = K6 [f JdcVf(, y; x, y)e-(C2z+Clf) 

+ J cl J/d dvV(x, y; c, y)y e-(c2i+c1f)] 

E(x, y)xy = K6 eh-(C2x+CIY) + C6 E(X, y). 

From (3.21) and (3.22) it follows that 

E(x, y) < K6 f dclJ dveh eh(Z-+V)eh-(C2 iC?) = 

~ y) ~ K5 f dvehC2x+Clfl+-/lfd~ \lvehv/(X-:+l/fl) e~(C 2i+C1f1)= 2 Ez (x, y) _ K6 dveh 2I]+v6 d A dveh(-+ v)-C22l8 
Ey(x, y) _ K6 f dteh IC2x+C1Y] + v1\ fU dii f vehV(z + ehV3(C2z+C1) 3 

E(x, y)xy ? K6 eh- C2x+CIYI + C6 fi3. 

Thus from (3.14) and (3.16) we obtain 
I E (x, y) i E* (x, y) I< Oiec2x+cl = y 

I E (x, Y)x I < E* (x, Y)x < ehC2x+ClY[132 + C2131] = 72 

(3.23) < E (x, y) I _ E* (x, y) < ehC2X1C3 + C,B ] = 

i E(x, y)xy i < E* (x, y)xy < K6 + ehC2 +Cly[C6fl + C1f2 + ClC201 + C233] 

= 74 
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Now substitution of the bounds in (3.23) in (3.12) yields 

I ux(P)-U(P)x I _'Y2 + h2a2, f 8(P)-U(P)y I _ 73 + h2a2X 
(3.24) I ()a 

2 
21 X ug (P) - U(P)x X Y 74 + h Ye 

4. General Quasi-Linear Case. In this section we shall consider a method for 
approximating the solution of 

uxy =f (x, y, u, v, w),2 (x, y) e- R 

(4.1) v = u , w= uy 

u(x,O) = u(O,y) = 0. 

We assume that f (x, y, u, v, w) satisfies the Lipschitz condition 

(4.2) f (x, y, u,v, w7C) -f (x y, u, v, w) I 
< K1 u + K2 I -V I + K3 I - w 1, 

and is bounded for 

-oo < u,V , w < 00. 

Under these conditions it is known [Diaz, 6] that (4.1) possesses a unique solution. 
We introduce a network as before and define the difference quotients as in (2.4). 

Again we extend the domain of definition of an arbitrary mesh function to the 
centers of squares as averages so that the chain rule for differencing (2.6) is valid. 
We define the finite difference analogue of (4.1) to be 

Uxy(P) = f(P, U(P), Ux(P), Uy(P)), 

(4.3) P = (mh + ? h,nh + ? h) m,n = 0,1,2,3,. 

U(x, O) = U(O, y) = 0. 

At each square with P given in (4.3) the difference equation becomes 

(4.4) U[(m + 1)h, (n + 1)h] = U (mh, nh) 

+ h[Ux(mh + -h, nh) + Uy(mh, nh + 2h)] 

+ h2f[P, U(P), Ux(P), Uy(P)]. 

Then (4.4) is of the form 

(4.5) U (mh,nh) = g[U (mh, nh)] 

where from (4.2) g is a continuous function of U (mh, nh). If we assume that h is 
so small that 

(4.6) 1h[K2 + K3 + !hK,] < 1 

then by the contraction mapping theorem we can solve (4.4) for U[ (m + 1) h, 
(n + 1)h] in terms of U[(m + 1)h, nh], U[mh, (n + 1)h], and U(mh, nh), through 
an iterative process. 

The discretization error E (P) =u () - U (P) satisfies the difference in- 
equality 
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Exy < K1I E I + K2IExI + K3 lEyj + K4 

(4.7) K4 =Kj I u -u IM + K2 I ux - ux IM 

+ K3 I uy - UY M + I Uz, - UXY |M 

at points P = (mh + 2h, nh + 'h) with 

wi(P) = J{u[(m + 1)h, (n + 1)h] + u[(m + 1)h, nh] 

+ u[mh, (n + 1)h] + u (mh, nh) } 

In addition we note that 

E(x, 0) = E(O, y) = 0. 

We pose the majorizing problem 

Wxy = K1W + K2WX + K3WY + K4 
(4.8) W(x, 0) = W(O, y) = 0. 

By an obvious modification of the proof of Theorem 2.1, Corollary 2 we conclude 
that 

(4.9) E I < W, lExI < Wx, lEyl ? Wy, IExyl < Wxy. 

The following theorem gives the bound on the discretization error in this case. 
TIEOREM 4.1. Let E = u - U where u and U are the solutions of (4.1) and (4.3) 

respectively. Then E has the bound 

(4.10) IEJ _ K4 dx fdy[ehl(t-x)+(r8))IehK3 Q-x)+K2(n-) 

where C0 is given by 

(4.11) C5 = K1 + K2K3. 

Proof: The theorem follows from (4.9) and Theorem 2.1, Corollary 1. 
The bound (4.10) on the discretization error will be explicit once we show how 

to bound K4 in terms of the data of the problem. At this point we assume that the 
partial derivatives of f with respect to u, v, and w through the third order are 
bounded. The quantity K4 in (4.7) can be bounded in terms of the higher deriva- 
tivesofu(x,y) asisseen from (3.4). Nowif I f lM= f(x, y, 0, 0, 0) lM and v(x, y) 
is a solution of 

vxy = K1v + K2vx + K3vy + I f I M 

1v(x, 0) = v(0, y) = 0 

then by the method of successive approximations we see that 

(4.13) Jul < v, luxl vx, luyl ? v,, luxyl < vX. 

Hence we see that bounds for u, uX, uy, Iuxy are given by (3.7) where we make the 
substitutions 

(4.14) la IM= K2, ibIM= K3, =K1+K2K3. 
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Bounds for the higher mixed derivatives in terms of the known bounds for I u I, 
I u. I , I uy I, I uy I are obtained by differentiating the differential equation (4.1), 
as was done in section 3. To obtain bounds for the higher pure derivatives we use a 
variation of the method applied in section 3. We illustrate the method for ux. 

From (4.1) we see that 

(4.15) uxxy = fx + fxuu + AUX. + fwux2. 

Hence by introducing an integrating factor 

(4.16) uxx(x, y) = f d-qg(x,) exp [-1 (x, X) dX] 

where 

(4.17) gg(x,Iy) = fx + fouu + 
fwux? 

(x, y) = f4[x, y, u(x, y), ux(x, y), u (x, y)]. 

Now under the assumption that fX, fu, f, , fe,, are bounded we can obtain an ex- 
plicit bound for u . The bounds thus obtained for the higher derivatives allow us 
to bound K. in (4.10). 

5. An example. Consider the boundary value problem: 

uxy(x, y) - xyu(x, y) = x y (9 - x y 2) 

u(x, 0) = u(0, y) = 0 

in the closed square s:{0 < x _ 1, 0 < y _ 1 }, which has the solution u = x3y3. 
From (3.7) we have 

IU(t, ) M < f J V(X,Y; ,) (9 _ x2y2)x2y2 dy dx 

I U(t, n){ jM < f j v(t, Y; t, I) (9 - t2y2) dy dX 

(5.2) + f f j v(x, y; i,q) 1(9- x2y2)X2y2 dy dx 

I U(, q) IM < f j V(X, 0; S, X) 1(9 -X272)X2t2 dx 

+ f I j v(x, y; , q) 1(9 - x2y2)x2y2 dy dx 

where 

v(x, y; 7, 7) = Io[ xy IX( -x)(< y)] < Io(2) / 2.28 

v(, y; ,) = v(x, ; , y) = 1 

(5.3) vJ(x, y; , n) = - Ii[2V1/ xy IY( - x)(O - Y)] 

< -I(2)1.6 
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(5.4) vJ(x, y; i, ) -_ I1(2) 1.6 /_- x 

From (5.2) and (5.3) by integration it follows that 

juj _ 2.18; ju1j, j uy _ 5.36 

jUX/ ? 11.18; ju1xx, j ? I _ 25.54 

(5.5) xxy I u x I _ 25.54; j jX , j j ? _ 54.26 

xzxx u xyyy _< 54.26; j jX 59.08 

zXzX X 1VUYY _ 148.88 

Now K4 (1, 1) appearing in (3.2) is given by 

(5.6) K4(1, 1) ? h2(a, + a3) 

where a, and a3 are given by (3.4). We have a1 = 11.36, a3 = 9.18, thus from (3.2) 
we obtain 

(5.7) | EM < 20.54h2 f f er VI xy I{(7 -x) + ( - y) } dx dy < 60.59h2 

The solution to the finite difference analog of (5.1) was obtained on the com- 
puter at the U. S. Naval Ordnance Laboratory. The calculations were made with 
h = 0.1 with the results given in the following table. 

x y u (X, y) U(x, y) E = u- U 

.2 .2 6.40 X 10-5 6.392 X 10-5 8.0 X 10-8 

.2 .4 5.12 X 10-4 5.116 X 10-4 4.0 X 10-7 

.2 .6 1.728 X 10-3 1.727 X 10-3 1.2 X 10-6 

.2 .8 4.096 X 10-3 4.093 X 10-3 2.7 X 10-6 

.2 1.0 8.0 X 10-3 7.995 X 10-3 5.2 X 10-6 

.4 .4 4.096 X 10-3 4.095 X 10-3 1.3 X 10-6 

.4 .6 1.3824 X 10-2 1.3821 X 10-2 3.2 X 10-6 

.4 .8 3.2768 X 10-2 3.2762 X 10-2 6.5 X 10-6 

.4 1.0 6.4 X 10-2 6.3988 X 10-2 1.2 X 10-5 

.6 .6 4.6656 X 10-2 4.6649 X 10-2 6.7 X 10-6 

.6 .8 1.1059 X 10-1 1.1059 X 10-1 1.3 X 10-5 

.6 1.0 2.16 X 10-1 2.1598 X 10-1 2.2 X 10-5 

.8 .8 2.6214 X 10-1 2.6212 X 10-1 2.2 X 10-5 

.8 1.0 5.12 X 10-1 5.1196 X 10-1 3.7 X 10-5 
1.0 1.0 1.0 9.9994 X 10-1 6.2 X 10-5 

In this case the a priori bound on the discretization error given by 5.7 is 6 X 10-3 

and the observed maximum error in the table above is 6 X 10 5. The fact that the 
error bound is 100 times too large is in part attributable to the crude manner in 
which the higher derivatives of u (x, y) have been computed. It is clear that the 
highel derivatives should be solved for directly in terms of u, ux , uy for the particu- 
lar problem under consideration with inequalities obtained only at the last moment. 
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We are indebted to Theodore Orlow and Al Johnson of the U. S. Naval Ord- 
nance Laboratory for their kind assistance in the calculation of the above example. 
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