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By M. Stuart Lynn 

Abstract. The asymptotic behavior of the round-off error, which accumulates 
when the well-known iterative method of (point) successive over-relaxation is 
used to solve a large-scale system of linear equations, is examined by means of a 
statistical model. The local round-off errors are treated as independent random 
variables and expressions for the mean and variance of the accumulated round-off 
error are obtained, as the number of iterations tends to infinity. 

1. Introduction. Consider the system of linear equations 

(1.1) Cx = b, 

where C is an n X n real matrix and b an n X 1 vector. In the numerical solution 
of (1.1), round-off errors accumulate. Wilkinson [14, 15] and Turing [11] have 
considered the effect of this where direct methods of solution are involved. As far 
as iterative methods are concerned, bounds for the round-off error occurring in a 
general iterative procedure have been obtained by Urabe [12] and Descloux [2]. 

In order to attempt to obviate the usual criticism that such bounds may be 
unrealistic, we shall use the technique, familiar in other fields of numerical analysis, 
e.g. Henrici [7], of treating the local round-off errors (see below) as independent 
random variables, and then obtaining expressions for the asymptotic behaviour of 
the mean and variance of the accumulated round-off error. In connection with 
iterative procedures. the statistical model employed was first used by Abramov 
[1] in studying the round-off error generated by the Jacobi procedure for solving 
(1.1). More recently, Golub [5] has used similar techniques to analyze the Richard- 
son second-order and Chebyshev semi-iterative methods. We shall consider another 
method, namely the method of (point) successive over-relaxation: Young [16], 
Varga [13]. 

The statistical model which is employed is certainly open to many severe criti- 
cisms, e.g. Forsythe [3], more so, in fact, than in other fields of numerical analysis 
where perhaps it can be used with more confidence. Principally, the fundamental 
assumption that the local round-off errors are either independent or random is 
certainly questionable, particularly after a large number of iterations, and the 
procedure reaches a 'state of numerical convergence': Sibagaki [10], Urabe [12]. 
However, the somewhat curious nature of the results obtained from this kind of 
analysis (see particularly Theorem 2) are perhaps not without interest. We would 
again refer the reader to Golub [4, 5] for a more detailed appraisal of the use of a 
statistical model in connection with iterative techniques, compared with the use 
of bounds. 
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Having obtained expressions for the mean and variance of the accumulated 
round-off error, it would not be strictly correct to apply the central limit theorem 
and deduce a normal distribution, since it can readily be shown that the accumulated 
round-off error remains uniformly bounded as the number of iterations tends to 
infinity. However, using an analysis precisely analogous to that used by Golub [5] 
we can nevertheless obtain probabilistic bounds for the round-off error. The con- 
tents of this are expressed in Theorem 3. 

The method of point successive over-relaxation or the Young-Frankel method 
may, as usual, be defined as follows. Let C be decomposed by 

(1.2) C= S-L-U =S-B 

where S is a diagonal matrix and L, U are strictly lower and upper triangular 
matrices, respectively. For arbitrary x(?), the sequence {x(k)} of vectors is defined by 

(1.3) Sx(k+1) = C( LX(k+l) + UX(k) + b) + (1 - c) SX(k) k = 0, 1, 2, ... 

where w is a relaxation-parameter which necessarily lies in the range 

(1.4) 0 < w < 2. 

We shall henceforth assume that C is symmetric positive-definite, so that 

(1.5) C= C*= 

and 

(1.6) L* = U, B =B* 

where, in general, A* denotes the (conjugate) transpose of a matrix A (since we 
shall always be working with real matrices, the conjugation operation is not in- 
volved). Condition (1.4) is then both necessary and sufficient to ensure con- 
vergence of (1.3) to x as k -+ o: Ostrowski [9]. Without loss of generality, we may 
also assume that 

(1.7) S= I 

the identity matrix, since we may write (1.1) in the form, 

(1.8) S-'12AS-1/2SI/2x= S-1/2b 

or 

(1.9) Aly =b 

where 

(1.10) A, = S"12AS-1/2 y= SI"2x, bb= S="2b7 

and Al is symmetric positive-definite with unity diagonal entries. 

2. The Model. Now suppose that, instead of solving (1.3) exactly, we actually 
compute vectors x(k , where (replacing S by I) 

(k+l) =(Lk(k+l) + Uk + b) 

(2.1) + - )X(k) (k+l) 
+ (1-c)~~+ e(+) k = 0, 1, 2, . 
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Here, {e(k)} (k = 0, 1, 2, * * * ) are the local round-off errors in the sense that they 
are the errors committed at each iteration. Let 

(2.2) r() =X(k) - x(k) (k = 0, 1,2, ) 

be the accumulated round-off error vector at the kth iteration. Then from (1.3) and 
(2.1), 

(k +1) (+) U k k kl . (2.3) r (kl) (Lr(k?l) + Ur(k)) + (1 - cw)r( + e , k = 0, 1, 2, 

where 

(2.4) r(0) = e?0) =0 

We treat the { e(k)} as independent random variables (see the remarks in ?1) with 
expected value 

E[e (k)] E 

where we assume that 

(2.5) Ek E (k > 0) 

where E is constant; and with co-variance 

(2.6) De(k) = _2R (k > 0); De(?) = 0 

where R is some positive definite symmetric matrix, again assumed constant, which 
we further necessarily assume commutes with L and U, and hence with A and B. 
By definition, we have that 

De(k) = E[(e(k) - ?)(e(k) - *] 

( 2.7 ) = E[e(k) e(k)*] - * 

and so 

(2.8) E[e(k)e(k)*] =2R + * 

Since we also assume that the { ek } are independent, we also have that 

E[e(k)e(i)*] = E[e(k)]E[e(i)]* 

(2.9) E= E (k ? j) 
Let 

(2.10) rk = E[r (k)] 

denote the expected-value of the accumulated round-off error at the kth iteration 
and let 

Vk = Dr(k) 

denote the co-variance matrix of the same. We are interested in the behavior of 
rk and Vk as k -* oo. 

Now from (2.3) 
(k +) (k) -k +1) r )Tr(k)?(I - L) -e 
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where 

T = (I - wL)-'(cU + 1 - cI). 

Thus 
k+l 

(2.11) r(k+1) = E Tk+l-j(I- _L)-1e(j) 
j=l 

and so, since E is a linear operator, 
{k+ } ( 

rk+l=j(I 
L) 

= (I - Tk+l)(I - T)-1(I - )- 

= (I - Tk+l)-1C-1E. 

Hence we have: 
THEOREM 1. Under the foregoing statistical assumptions, and if co satisfies (1.4), 

then: 

rk = (I Tk)cvlClE, 

and 

(2.12) r = cl, 
co 

,where 

(2.13) r= limrk. 
k--> 

It should be noted that Theorem 1 does not rely upon the assumed independence 
of the {e(k) }. 

3. The Co-Variance Matrix. We now consider the behavior of Vk as k -* oo. 
From (2.8), (2.10) and the commutativity assumptions, we have immediately 
thatt 

(3.1) Vk = a_2R[(I - wU) (I - coL)] Z 5E T jT 
j=l 

Since T is neither symmetric nor normal, we lack any method for finding an explicit 
expression for the right-hand side of (3.1) (bounds do not interest us, since they 
defeat the object of a statistical investigation). This is unlike the case for Jacobi 
iteration as studied by Abramov [1], and it is in this context that the present prob- 
lem possesses a separate interest. This is similarly unlike the situation for the 
Richardson second-order method as studied by Golub [5]. 

For a particular class of matrices, however, we may adopt a different approach; 
this is the class of matrices which have Property A and are a-i-ordered: Young 
[16]. For our purposes we may define these as matrices for which B in (1.2) has 

t The author is indebted to the referee for correcting an error in the author's original 
analysis, and for the more fruitful formulation and proof of Theorem 1. 
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the form: 

m 

(3.2) [F ] 

for some integer m, 0 < m < n, so that F is an m X (n - m) sub-matrix. Thus we 
have: 

Definition 2.1. If B in (1.2) has the form (3.2), we shall say that C in (1.2) 
has Property A and is a-i-ordered. 

In the terminology of Varga [13] B is weakly cyclic of index 2 and is in its 
normal form. 

It is also worth remarking, perhaps, that if C = C*, has Property A and is 
ol-ordered, then the assumption that R commutes with both L and U is satisfied 
if (i) R has the form: 

m 

R= m{R 2 
] 

where R1 = Ri* is an m X m sub-matrix, and R2 = R2* is an (n - m) X (n - m) 
sub-matrix, both of which are, of course, positive-definite; and (ii) FR1 = R2F. 

Our principal result is: 
THEOREM 2. If C = C* is symmetric positive-definite, has Property A and is 

ui-ordered, if 0 < w < 2, and if (2.6), (2.6) and (2.9) are satisfied, then 

(3.4) V = o2/;[c(2 - o) RC- 

where 

(3.5) V = lim Vk , 
k--oo 

and 

(3.6) Vk = Dr(k) 

the co-variance of r(k) 

Proof. The proof proceeds by a sequence of lemmas. As an-immediate conse- 
quence of (3.2), we find that: 

LEMMA 1. If C has Property A and is o1-ordered, then 

(3.7) L2= U2 = 0, 

and hence B2 commutes with both L and U. 
LEMMA 2. If C- C* has Property A and is oi-ordered, then the method defined 

by (1.3) converges if and only if the roots of 

(3.8) 02 _Xio@+ a = O (i = 1, . .., n) 

are less than one in modulus, where Xi are the eigenvalues of 

(3.9) A = 2(1 - w)I + w 2B2, 
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and 

(3.10) a= (1 - )2 

Proof. This is merely a re-formulation of the familiar relationship of Young 
[16], equation (2.4). We note that, for future reference, 

(3.11) 0<a<I 

LEMMA 3. {r (k)} (k = 0, 1, 2, ... ) satisfy the relationships: 

(3.12) r(k+2) =Ar(k+l) -r(k) + f(k+2) (k=O, 1, 2,...) 

(3.13) r = f (=) = 0; = f(l) = (I + wL)e(1), 

where 

(3.14) f(k+2) = (I + wL)e(k+2) + (WU + 1 -WI)e(k+l) (k = 0, 1, 2, ... ) 

Proof. Since L2 = 0, one can immediately verify that 

(I -coL)- = (I + wL). 

Hence, from (2.3), for k = 0, 1, 2, 3, **, 

(k+2) -=U+ (k+) (k+2) r (I -wL)1(U 1 Ir(?)+ e(+] 

- (I + wL)[(wU + 1 - wI)r(k+l) + e(k+2) 

1 - WI + W2B2)r(k+l) + WU(I - wL)r(k+l) + W(1 - W) Lr(k?1) 

+ (I + wL)e(k+2) 

(1 - WI + w 2B 2)r(k?l) + wU[wUr(k) + (1 - c,)r(k) + e(k+l)] 

+ W(1j- W)Lr(k+l) + (I + (wL)e(k+2) 

(1 - WI + w 2B 2)r (kl) + (S(1 - W)[Lr(k+l) + Ur(k)] 

+ (I + wL) e(k 2) + wUe(k+l) 

= (21 - WI + W2 B 2)r(k+l) (1 - W)2r(k) + f(k+2) 

= Ar(k+l) - ar(k) + f (k+2) 

as required. The proof of (3.13) is entirely similar. 
Now from (3.12) and (3.13), it follows that for certain polynomials pkj(A) 

in A, 
k 

(3.15) rk) = ZpkJ(A)f (k = 1,2,3, .. . 

Hence 
k 

rk = E[r (k)] E pk(A)E[fj] (kc = 1, 2, 3, ... ) 
j=- 

ro= 0; ri = E[f(')] (I + wL)E 
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Thus, since A = A*, 

(3.17) Vk - E[r(k)r] - rkrk 
k 

= 5 pki(A) Eijpkj(A) 
i,j=1 

where 

(3.18) Eij = E[f(i)f(j)*] - E[f(i)]E[f(j)*] 

We now wish to compute the Ejj(i, j = 1, 2, .. ). Various cases arise. From 
(2.5), (2.8), (2.9) and the fact that R commutes with B, L and U, we have, omit- 
ting details: 

(i) j = j # 1: = o2R[2(1- w)I + w2(I + B + B2)] 

(ii) i = j = 1: El = u2R[I + coB + w.2LU] 

(3.19) (iii) 2 < j = i + 1 < k: Esi,+1 = of R[W2 L- (1 - )I] 

(iv) 2 < i =j + 1 k: Ei+i =- 2R[w 2U- (1 -_)I] 

(v) i-ij >2: Eij=0 

Let {tji} (i = 1, * * , n) be the real eigenvalues of B, so that 

Xi = 2(1 -co) + c2/LIi2 (i=1U .. n) 

where Xi(i = 12 *. , n) are defined in the statement of Lemma 2. Now, if p(B) 
is any polynomial in B, then the eigenvalues of p(B) are p(Aj )(i = 1, * , n) 
and the corresponding eigenvectors are precisely the n linearly independent, 
orthonormal (say) eigenvectors xi(i = 1, *., n) of B. Then from (3.17) and 
(3.19), and using the spectral decomposition of B and A, 

( ~~~~~~~~~~~~k 
Vk 0P R [2 (1 -W)I + W2(I + B + B2)]. E p2k f(A) 

+ [I + wB + W2LU]pk I(A) 
kc- 

+ [W2B-2 ( 1 -co)I] pk.i (A) pk,.il (A) 

(3.20) nk 
(= u2R E{[2(1 - c ) + W2(1 + A,j + M2)] . p2e(Xj) 

j=l i =2 

+ [I + wB + w2LU]p i(k,) 
k-1i 

+ [w llj - 2(1 - )]Z Pk, ii(Xi) Pk,i-1(Xj)fI x 

where pkj((), for any scalar, <, denotes that polynomial in p which has the same 
coefficients as pk,j(A). 

In order to examine the behaviour of (3.20) as k -- oo, we must consider the 
Pk,j in more detail. Substituting (3.15) into (3.12), (3.13) and (3.14), and 'com- 
paring coefficients' of the {f(k)} (which is permissible since the resulting expression 
is to be true for all {e(k)I and hence all tf(k) I) we have the recurrence relationships: 
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pk,k(A) = I 

(3.21) pk,k-1(A) = A 

pk,i(A) -Apkk1,j(A) + Oc Pk-2,i(A) = 0 (i = 1, 2, , k -2) 

for k = 1, 2, . Similarly, Pk, ,i(() satisfies the recurrence relationships 

Pk,kQP) = 1 

(3.22) Pk,k-1(<) = 

Pk,i(() - (Pk-1,i(P) + a Pk-2,i(() = 0 (i = 1, 2, , k - 2) 

for k = 1, 2, ... Now consider the difference equation for pi(() 

Pi+2(() -(Pi+l(j() + a Pi(() = 0 (i = 0, 1, 2, . . ) 

Po(f) = 1; pi(p) = f 

Then from the familiar theory of difference equations with constant coefficients, 
we know that 

(3.24) p (99 { ~(t 
i+ 

-t2i1 )/(tl -t2)j if tl t2 

(1i + i)ti, it tl = 

where tl, t2 are the roots of 

(3.25) t2 _ (t + a = 0 

From (3.23) we see that pi(p) is a polynomial in w. It is easy to verify from (3.22), 
and noting that both the pi(() and the Pk,j(() are uniquely defined, that 

(3.26) Pk,j(() = Pk-j(() (j = 1, , k) 

Hence 

(3.27) pk,i(A) = pk-j(A) 

where pi(A) has the obvious meaning. It follows that 
k k k-2 

(3.28) Z pk,i(') = Z pk-i(9) = > pi2( ) 
i=2 i=2 i=O 

k-1 k-I k-2 

(3.29) P Pk,z()Pk,z+1(0) = Zpk-i(P) pk-i-1(iP) = Zp%(0) pi-1(0) 
i=2 i=2 i=1 

Furthermore, from (3.24), if It8I < 1(s- 1, 2), then pi(() -*0 as i - c, and 
hence from Lemma 2, 

(3.30) Pk,l(X) = Pk-1(Xj) 0 as k-* oo j= 1, * ,n. 

We now need: 
LEMMA 4. Suppose, in (3.25), that I ts < 1(s = 1, 2), and let 

k k 

(3.31) Mk(() Z Pi (); Nk(P) = i (0 Ps- (P) 

Then 

(3.32) M(0) = lim Mk(), and N(() = lim Nk(0) 
k-+oo k-+oo 
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both exist, and in fact, 

M(f) = [(1 + a)/(1 - a)]/[(1 + a)2 - yP2] 

N((p) = [/(1 - a)]/[(1 + a)2 p2] 

Proof. This is a simple computation using (3.24), the fact t1 + t2 = (f t1t2 = a 
andthat It81 < 1(s = 1,2). 

Finally, then, applying Lemma 2 in Lemma 4, and using this in (3.28), (3.29) 
and (3.30), we have, on letting k -*oo in (3.20): 

V = lim Vk 
k-.oo 

n 

= Z2 {[2(1 - c) + co2(1 + ,j.t + ,.uj2)]Y[i + (1 - w)2]/[1 -(1 - CL,)2] 
j=l 

+ Xj[CO21.Jj - 2(1 -co)]I[l -(1')]-[+ (1 _ CO )2]1 
Xi X 

n 

(3.34) = f R EQj((O)XjXj X 

where, since Xj = 2(1- co) + CW2 IAj2 ,and simplifying: 
[4 3 + W4 42 + 2 (2 _ W,) 2'+2(2_)2 

(3.35) cW3[(2 - ,) 2 + W 2/Aj2] 1 _12j2) 

= l/[c (2 -co) (1-j] 

Thus 

V = o-2R/[co(2- co)] * X 
jXj*l ( 1-,uj) = _2/ [c(2 - w)] *RC-', 

which completes the proof of Theorem 2. 
Apart from the many objections that could be lodged from a purely statistical 

standpoint, it would appear from Theorem 2 that it could be dangerous to over- 
relax excessively, that is, to employ values of w close to 2. It is well-known, however 
Young [16], that, for certain problems, the optimal value of co = Wb, considered 
purely from the standpoint of the asymptotic rate of convergence, tends to 2 as 
n ---> oo. Furthermore, for ill-conditioned problems in general, whereg, = maxi i ,ui I 
is very close to unity, then Ub iS very close to 2. The Young theory of successive 
over-relaxation also indicates that it is preferable to over-estimate wb rather than 
to underestimate it. It is in the context of these results that perhaps Theorem 2 
may have some significance. Much depends upon the size of a-2R, however, about 
which it is dffficult to make a priori assumptions, and which will, in general, be a 
function of w. The presence of C-1 in (2.13) and (3.4) is merely confirmation of the 
well-known fact that the round-off error depends very definitely upon the condi- 
tioning of C [12, 15, 2] even in an iterative method. 

Furthermnore, as was stated in the introduction, the central limit theorem is not 
applicable to the distribution of r (k) as k --.oo, since it may easily be show-n that 
r(k) remains uniformly bounded for all k. However, using Lemma 3 of Golub [5] in 
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precisely the same manner as is applied there to the Richardson second-order 
method, we may use Theorems 1 and 2 to obtain probabilistic bounds: 

THEOREM 3. Under the same hypotheses as in Theorem 2, then for all 0 ? < 1, 

(3.36) P{ 11 r) - r JJ2 < [o_2 tr (RC-1)]/[co(2 - c)]_ 1-/, 

where P denotes the probability function, tr ( *) the trace of a matrix, I the 
Euclidean norm, and 

(3.37 r(?= lim r(k), r = r= C-1. 
kc-'.-ook-o (. 

We remark that, if R = I, then we may bound tr (C-1) in (3.36) by n/(1 -,), 
where ,u = maxi | pi I . 

4. Numerical Experiment. As a simple numerical example, we consider the one- 
dimensional Dirichlet problem 

y =f(x) 

(4.1) y(O) = g; y(l) = f13 

The system of linear equations which arises when this problem is discretised has 
the form: 

(4.2) Cy = -h2f + g, 

where C is the n X n matrix 

2 -1 0 * 
-1 2 -1 

(4.3) C= O -1 2 * 12] 

_ 0 -1 2 

for some permutation matrix, x, and 

f = =f,*** n 
(4.4) g=V1 ofol* 

g = =[R0) ?, ** *, oil9]* 
where fi = f(xi) and xi = ih, (n + 1)h = 1. In order to apply our theory, is 
such that C has the o--ordering. Now it can be shown (Marcus [8]) that if C-1- 
('yij), then 

(4.5) Yij {i (n+1 -j)/(n +1), if j?>i 
(4.5) 77j = {(n + 1-i)/(n + 1), if j < i 
and hence, letting - = 

(4.6) yj = i(n + 1 - i)/2. 

Suppose in Theorem 1 that 

(4.7) ? = " El, ,2 X * * n] r = =[Pl X P2 X Pnl] 
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Then, for some permutation 7r = 7r(i) of {1, , n, 

(4.8) Pi =(n + 1-i) >3jej + i (n + 1-j)e/j [(n + 1)] 
j<i j_i 

If we assume that all the Ej's are constant, ej e (say), then 

(4.9) P7r(i) = Yiw= i(n + 1 - i)e/2w 

Similarly for the variance, denoting, in Theorem 2, the diagonal elements of V by 
vi and assuming that R I, 

(4.10) V,-(i) = &2i(n + 1 -i)/[(2 - w) (n + 1)] 

In actual numerical computations, it is obviously difficult to make a priori 
assumptions about the size of e and o2 apart from justifying all the sundry as- 
sumptions that led to (5.9) and (5.10). In an attempt to facilitate these problems, 
we computed the solution to 

Ym" (x) = lki(ex + elx) 

ym(0) = Ym(l) = k2 + mA 

for certain constants ki , k2 and where A is a small increment. kI and k2 were chosen 
(k, = 3 k2 = w) such that the analytical solution of (4.11) lay between 2 and 1 
for m < 100 and A=10-4, and so that ym"' (x) -ym(x) was of small order of mag- 
nitude in comparison to 1. The first of these requirements was to meet the demand 
that the -j's be constant, and so that our floating-point arithmetic became effec- 
tively fixed-point, and the second of these requirements attempted to ensure that 
(2.5) was fulfilled, since then our initial guess, namely of setting yi equal to fi, was 
close to the exact solution and would not change by much during the computation. 

The successive over-relaxation procedure was carried out in both single and 
double-precision arithmetic, the difference between the two being considered as 
the accumulated round-off error. The mean and variance of the latter were cal- 
culated, using m = 1, . , 100 as a sample (see Henrici [7] for a full discussion 
of this kind of experiment). One-hundred iterations were performed; it was sur- 
prisingly found that both the means and the variances converged, and that k = 100 

TABLE 1 

Dependence of Expected Values upon n 

Xo 11.2 1.5 1.8 

n (a) (b) (c) (a) (b) (c) (a) (b) (c) 

10 61 71 67 64 71 56 65 71 57 
20 247 257 212 253 257 183 251 257 246 
30 564 560 517 576 560 432 572 560 478 
40 1011 980 917 1064 980 820 1079 980 1053 
50 1497 1517 1694 1504 1517 1596 1513 1517 1581 

(a) Experimental values of 1010 Pmax, fixed-point. 
(b) Theoretical values of 1010 Pmax, fixed-point. 
(c) Experimental values of 109 Pmax, floating-point. 
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TABLE 2 
Dependence of Variances upon n 

Xo 1.2 1.5 1.8 

n (d) (e) (f) (d) (e) (f) (d) (e) (f) 

10 131 76 117 137 121 144 462 320 381 
20 247 144 206 342 230 315 1038 611 735 
30 372 213 317 398 340 498 1316 903 1076 
40 516 282 346 621 449 881 1521 1194 1298 
50 724 350 590 740 559 1113 1976 1486 1727 

(d) Experimental values of 1020 Vmax, fixed-point. 
(e) Theoretical values of 1020 Vmax, fixed-point. 
(f) Experimental values of 1018 Vmax, floating-point. 

TABLE 3 
Dependence of Expected Values and Variances upon w 

w(a) (b) (c) (d) (e) (f) 

1.1 239 161 267 129 167 
1.2 247 212 247 144 206 
1.3 252 229 258 172 218 
1.4 252 252 300 191 229 
1.5 253 183 342 230 315 
1.6 253 263 491 291 358 
1.7 254 263 535 383 505 
1.8 251 246 1038 611 735 
1.82 274 257 217 1188 666 921 
1.84 247 225 1201 752 1032 
1.86 254 294 1441 844 1409 
1.88 258 197 1539 988 1906 
1.90 255 219 2005 1216 2124 
1.92 254 240 2392 1525 2706 
1.94 254 261 3335 2041 3120 
1.96 274 270 4621 3073 4914 
1.98 261 221 8742 6158 7091 

was sufficient to ensure this convergence, which is required by the asymptotic 
nature of theorems 1 and 2. The procedure was carried out twice, once in fixed- 
pointt and once in floating-point arithmetic, in both cases symmetric rounding 
being employed. An analysis of the arithmetic operations involved, using in par- 
ticular Theorem 1.9 and equations (1-107) and (1-108) of Henrici [7], leads to 
the assumption that for the fixed-point comiputation 

OWu~ 2 /-J9 w2+16U2 
(4.12) E 2 2; 8 12 

for 1 < co < 2, where u is the basic machine unit. The fact that E is not zero in 

t The author would like to acknowledge the assistance of Mr. Peter Golitzen in this con- 
nection. 
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spite of symmetric rounding being employed stems from the particular equation 
solved, where we have to form products of the form lyi where 2 < yi < 1, and 
the only possible values of the round-off error in forming this product is either 
0 or u/2. This is also responsible for the peculiar expression for 0-2. 

Since the floating-point computations performed were in fact pseudo fixed- 
point, we also assume that (4.12) holds in this case, too. In the fixed-point cal- 
culation, u = 2 30, whilst for the floating-point calculation, u- 2 27. Thus from 
(4.9), (4.10) and (4.12), we expect that 

(Pr) - i(n + 1- i)u/2 
(4.13) 

P i 

v, _ [i(n + 1 i)(9W2 + 16)u2]/[96(n + 1)co(2 - c)] 

so that if we let pmax = maxi j Pi I , V.a,c = maxi j Vi j, 

Pmax-- (n + 1 )2u/16 
(4.14) Vmax [(n + 1) (9W2 + 16)U2]/[384w(2 - )] 

Or computational results are divided into two parts, one to show dependence 
upon n, and the other to show dependence upon c. In Tables 1 and 2 we show de- 
pendence upon n for co = 1.2, 1.5; 1.8. In Table 3 the dependence upon X for n = 20 
is shown; in this case cb, the optimal value of c, is approximately 1.74. We give 
theoretical values only for the fixed-point computations. It will be seen that the 
experimentally calculated expected values correlate quite closely with the pre- 
dicted theory, whereas the experimental values of the variances seem to be slightly 
higher than the theoretical values. This latter situation is most probably due to 
the non-independence of the local round-off errors after a large number of iterations. 
Similar experiences were obtained in the numerical experiments of Golub and 
Moore [6]. 

The author would like to extend his appreciation to Professor P. K. Henrici 
for his guidance in the preparation of the dissertation upon which this paper is 
principally based. He would also like to acknowledge the constructive criticisms of 
Dr. J. H. Wilkinson. 
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