
Implicit Runge-Kutta Processes 

By J. C. Butcher 

1. Introduction. A Runge-Kutta process is a means of obtaining an approxi- 
mation y to the solution at x = xo + h for the system 

dY f(y) y = yo at x = xo, 
dx 

where y is a vector of n elements and f (y) a vector function of these elements. 
The equations defining y for a v stage Runge-Kutta process are* 

g(t) = f (yo + hEaijg(i)) ( = 1,2, ... v), 

y yo + hE big(), 
i=1 

where the coefficients aij, bi (i, j = 1, 2, *, v) are numerical constants. 
It was shown [1] that the true solution y and the approximation y can be ex- 

panded in power series given by the equationst 

(1) y = yo + E aF - 

(2) y = yo + ZrF h l 

The summations are over the different "elementary differentials" F for the 
function f, arranged in a sequence of non-decreasing r, the order of F. 45 is the cor- 
responding "elementary weight" and a, 3 are numerical coefficients independent 
of the form of f. Some formulae and tables for a and A are given in [1]. 

Thus if y, y are to agree to terms in hP we must have 

(3) 

where y = r3/a, for all 4 for which r < p. 
A general Runge-Kutta process will be called "implicit" in contrast to those 

processes in which aij = 0 for i < j; these will be called "semi-explicit." If in addi- 
tion aij = 0 when i = j the process will be called "explicit." It has been traditional 
(for example [2, 3, 4, 5, 6, 7]) to consider only explicit processes. 

Received November 1, 1962. Revised April 22, 1963. 
* If the function f(y) satisfies a Lipschitz condition and h is sufficiently small, then the 

equations defining g(l), g(2), * , g(v) have a unique solution which may be found by iteration 
(see Appendix). 

t It will be assumed throughout that f(y) and all its derivatives exist and are continuous 
so that the Taylor expansions for y and y may be terminated at any term with an error of 
the same order as the first term omitted. 
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For convenience we shall designate the process by an array as follows 

all a12 *-- a,, cl 
a21 a22 ... a2v C2 

a,l aV2 *-a., cv 

bi b2 bp 

where cl = .= aij . 
A well known example of an explicit process is the following due to Kutta [3]; 

in this case p = 3. 

0 0 0 0 

2 0 0 1 

-1 2 0 1 

1 2 1 
6 -! 6 

In contrast we have as examples of implicit and of semi-explicit processes the 
following: 

0 0 0 0 0 00 0 

5 1 1 1 1 2 

2 1 010 
6 3 6 0 1 0 

1 2 1 1 2 1 
W 3 6 -63-6 

The first of these is equivalent to a process due to R. F. Clippinger and B. Dims- 
dale and quoted by Kunz [8]. On the other hand the semi-explicit process appears 
to have been previously overlooked even though it is of comparable accuracy and 
more convenient for practical use. Using results proved in section 2 of this paper 
or by simply verifying (3) for the appropriate 1 it is easy to verify that p = 4 in 
each case. 

It is well to consider what we might hope to gain by relaxing the restriction of 
allowing only explicit processes. In explicit processes we have v (v + 1) /2 (= NE, 

say) coefficients aij, bi to choose while in the semi-explicit case the number is in- 
creased to NS = V(V + 3)/2. However, for implicit processes we have available 
the complete set of NI = V (' + 1) coefficients. It is reasonable to hope that with 
N variables we can satisfy M restrictions as long as M ? N. 

The numbers NE, NS, N, are shown in Table 1 as are the numbers of restric- 
tions Ml corresponding to different values of p. This number is, of course, the num- 
ber of elementary differentials with orders not exceeding p, or what is equivalent, 
the number of rooted trees with no more than p nodes [9]. 

Basing our comparison on this table we see that the gain in accuracy that can 
be achieved by the use of implicit rather than explicit processes is not more than 
one power of h and in some cases semi-explicit processes do not give even this gain. 
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TABLE 1 

v NE Ns NI p M 

1 1 2 2 1 1 
2 3 5 6 2 2 
3 6 9 12 3 4 
4 10 14 20 4 8 
5 15 20 30 5 17 
6 21 27 42 6 37 
7 28 35 56 7 85 

However, the type of argument based on merely counting the number of equa- 
tions of the form (3) that must be satisfied, ignores the relationships between 
them. In fact, it happens that the M restrictions of Table 1 can often be satisfied 
with considerably fewer than M variables. 

Section 2 of this paper will be devoted to some general results on the relation- 
ships between the different 4, and the following sections will contain a study of a 
set of processes which are generalizations of the Gauss-Legendre quadrature formu- 
lae. 

2. Some General Results. It is convenient to restrict ourselves in this paper to 
processes in which cl , c2, * - *, c, are all distinct and none of b1, b2, *-* *, bp vanishes. 
If these restrictions are relaxed some results of this section will require slight 
modifications. 

We shall use the symbols A, B, C, D, E to represent certain statements about 
the numbers aij, bi. These statements will depend on one or, in the case of E, two 
integral parameters which we will write as though they were arguments and the 
statement symbol a function of them. In the definitions of the symbols which now 
follow, k and 1 will always denote positive integers. 

1 
A(t): =-wheneverr <?, 

-y 
p 

B(S): [4?k-] ZE bz cskb l c 1 for k ? i 
k 

k 

E(t, ~): Z Z [+k-Eb~ ckklaij Cl-l = 1 fork ..andla 

t, 
Cik-1 1bj=l l(kC+k1 

A number of theorems which are needed in the later sections of this paper can be 
expressed conveniently in terms of these symbols. After a statement of these the 
proofs will follow. 

THEOREM 1. If A (), then B (). 
THEOREM 2. If A ( + -q), then E( , 'i). 
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THEOREM 3. If B( + q) and C(rq), then E( , ti). 
THEOREM 4. If B ( + ri) and D (), then E (, q). 
THEOREM 5. If B (v + q) and E (v, q), then C (r7). 
THEOREM 6. If B ( + v) and E (, v), then D (). 
THEOREM 7. If B(r), C(r) and D(t), where r < + n + 1, r < 2rq + 2, then 

To prove Theorem 1, we note that r = k for = [ Also]. Aso from equation 
(31) of [1] we see that y = k. Similarly for 4 = we find r = k + 1, 
-y = l (k + 1) so Theorem 2 follows. 

Theorem 3 may be verified immediately. If k < i, 1 < v then of the three 
expressions 

(4) E E b k-l 
i=1 j=1 

1 +l-1 
(5) bi c!+k 

(6)1 
((l + k)' 

(4) and (5) are equal by C (v) whereas (5) and (6) are equal by B(t + q). 
Theorem 5 is a sort of converse to theorem 3. If k < v, 1 < v (5) and (6) are 

equal by B(v + q) while (4) and (6) are equal by E(v, a). Hence we have 

E bi cik-1 E aij cjl-' - c .) = 0. 
i=l j=l Tc/ 

For k = 1, 2, * * , v this constitutes a set of v homogeneous linear equations in the 
v variables (Z., aijcjl-l -lcil), i = 1, 2, * , v. Since the matrix of co- 
efficients is non singular, these variables all vanish, a result equivalent to Theorem 
5. 

To prove Theorem 4 we see that if k ? i, 1 < X then (4) and (6) are each equal 
(by D (Q) and B (Q + q) respectively) to 

(7) k E (bj cj'-' - bj cjk+1 1) 
kj=1 

so the result follows. 
Theorem 6 bears the same sort of relationship to Theorem 4 as Theorem 5 

bears to Theorem 3. If k < i, 1 < v (6) and (7) are equal by B ( + v) and (4) 
and (6) are equal by E (Q, v). Thus 

cj bi cik-laij - b(' -_c)) O, 

for 1 = 1, 2, * * , v and the result follows in the same way as for Theorem 5. 
Finally, assuming that 5 _ t + v + 1, < < 2q + 2 we will. prove Theorem 7, 

that A (r) follows from B (c), C (v) and D (i). We shall use the symbol to denote 
the identity of two expressions when regarded as linear functions of bi X b2, X , b,. 
Thus if 4) = bii ( ' = ZD=i bixi' where xi, xi/ are functions of 
all, al2, a,,, athen (--4' will mean xi = xi', i = 1, 2,**, v. 
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Using this symbol we see immediately that if ci = ,,i' (i = 1, 2, * , s) then 
[cIb1cIb2 *.. (*.' * [I1'I2 * * ]. As a preliminary to the proof of the theorem we 
show by induction the lemma that 

abr[O 

when r < v + 1. If we suppose b = ... * ] and that 

(8) ri[4ril ]t 

since the orders r1, r2 . . . r8 of c1J, ..2 ., 4 are each less than r, we have 

'Y = r'Yl'2 *z 7 

so that 

7-rl) ry'2 * * * 7 l '1 ?2 * ** j 

rri r2 r,[[<O rj-l 
LO r2-1 

3 rZ j{bi(rl Z aij cj'rl)( r2 aij cjr2.) aij cj(r-1 

Using C (v) and that fact that none of r, , r2 * , r8 can exceed v we find 

= r E bCcrl1+r2+ +r 
r=1 

proving the lemma. 
In this result we may now replace by = and, by B(v) and the lemma we 

have A (77 + 1). To prove the result of the theorem for v _ r > v + 1 we write 
) = ['142 ... (D] and suppose that 45' is one of c1) * , cI)2, , cI) chosen so that its 

order r' is not exceeded by any of ri , r2, *, r8 . For r' ?< the lemma still holds 
so we need consider only the cases r' > 7. We now use induction on r', r assuming 
the result true for all lower values of r and with a given r for all lower values of r'. 

No two of ri , r2 X , r8 can exceed v for otherwise we would have 

r =1+ rl + r2 + * * v + r > 2f7 + 3 > D. 

Using the same sort of calculation as in the proof of the lemma we find 

-r bicir-r laijxj 
i=1 

where 

t Throughout this paper the convention will be adopted that if an elementary differential 
is assigned a subscript, superscript or other distinguishing mark, the same marks will be used 
with the corresponding elementary weights and the numerical constants a, j3, -y. 
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and, by the induction hypothesis, 

1 

Now r-r' _ (? + 7 + 1)- (7 + 1) = t.Hence, usingD(t) we have 

_ ry Z bi(1 -Crr X/ 

r'y - r r * ]) 

where b' being of order greater than 1 can be written 

= 4-4'2 8]. 

The orders of 4bl', 42, * ,'14 are each less than r' so, using the induction hy- 
pothesis, a short calculation enables us to evaluate 

[?r r' ?12...b' = r. 
yr 

Hence 

=r-r' (,/- = 1, 

proving Theorem 7. 

3. Integration Processes Based on Gaussian Quadrature Formulas. For the 
system 

dyl f(Y2), Y1 = 0 dx1 
(9) d at x = x, 

dy2 1 

dx 1 

the integration process reduces to a means of evaluating I = f+f (x) dx using 
the quadrature formula I = hZl=j bif (xo + hci). For this formula to be accurate 
to terms in h', it is not necessary for all the conditions implied by A (p) to be satis- 
fied but only those contained in the statement B (p). Hence to each Runge-Kutta 
process there corresponds a quadrature formula characterized by the values of 
b, b2 *... , bp ; Cl, C2,' ''' , cv . In this section we concern ourselves with the well 
known Gauss-Legendre quadrature formulae [10]. It will be found that to each 
such formula, as adapted for integrating in the range (xo , xo + h), there corresponds 
a unique Runge-Kutta process with the same order of accuracy. 

For the form of the Gauss-Legendre formula that we use, Cl , C2, * , c. are the 
roots of the equation P, (2c - 1) = 0, where P, (x) is the Legendre polynomial of 
degree v. The consequence of this choice is that when any v of the equations of the 
set B (2v) hold the rest do also so that b1, b2, * *, b. can be found as solutions to 
these equations. 

The important results of this section are the following: 
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TABLE 2. Processes based on Gauss-Legendre quadrature formulas 

=1: 1 1 V= 1: 
~~~~2 2- 

2: N/1 3V 1VN/3 
V = 2: ~ 4 4- 6 2 6 

1+_ 1 1 _+ 
4 6 4 2 6 

1 1 
2 2 

v=3: 5 2 / V155 _ /'Y-5 1 _iV V=3:36 -9 15 36 30 2 10 

5 + k /V 5 2 5 _ /V5 1 
36 24 9 36 24 2 

5 + N/f5 2 + V/LS 5 
__+ -/15 

36 30 9 15 36 2 10 

5 4 5 
18 918 

1 , 1 1 
V 4: Wj Wj - 3 + W41 Wl - W3 - W41 @j- - -5 - 2 

WI1W3 + W4 Wj Wj W5 Wl1W- 3 - W4 W2 2 

W1 + W3' + W4 Wj +W6 Wj W1 + W3 - W4 | + W2 2 

1 ~~~~~~~~~~~~~~1 
W1 +6 CO1 + W3 + CW4 Wl1 + W3 W4 Wi 2 + W2 

2ci 2wl' 2wl' 2W1 

j N/'_ ,3_ 1 +/3 _1 A/15+2V\/3 
LU 8 144' 8 144 ' 2 35 

W2 
15 2 

\/-(0 /+<71 ) W3 = W2( _x) 2 v 35 c =C26 +24 J 9 9 6 24 ' 

4= W2 (2 +V , -340 = W2 1 - 5V"3 W5 = W-2w3 

W5 = W2 -2c3']. 
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TABLE 2.-Continued 

V = 5: 

Wi -W+ 32 , 1i-W 
W1 i j W3 + W4' 325 - W i W 3 3-W4 l - - - 

1 
W2 225 2 

Wj - W3 + W4 Wj 32 ,_ t56 Wl W6 Cj C - - 1 W2 2252 

t t ~~32, ,1 
WI + W7 Wi + 7 22 -7 WW1-7 1 

FW + @3 + @4 W1-+-W6 225 2 

?1 + W' + 1 +4 ( + W6 2 + Wj 3+- i ? 3-4 -1 1 2 + W2 

225 2 

2wi 22w' 64 2w,' 2W1 

[ 322-13\/0 322+13N/7 !/ 1 35 + 2V7- 
LW= ' 13600 = 3600 23/ 63 

W2 1 /35- 2 (452 + 59/0\ ( ,452 - 59V/i0 
2 63 , CD3= 2\ 3240 J W3 = W2 3240 /' 

(64 + 11 -\/0 
4 264 

- 11 
8 

23 - V/6\ 
1080 J, \ 1080 / 405 /' 

@6 =8X2( 70M W6 =W2-2W3-W06, W?6 =WC2 -2W3'-W?6' 

W5 8W2(405 W 2 23-w 6 2 wl-w1 

(308 - 237 , , (308 + 23Ri] 
W7 = W2 960 W7 = W2 960 

THEOREM 8. If A(2v) then B(2v), C(v), D(v). 
THEOREM 9. If B (2v) (hence a Gauss-Legendre formula) then either of C (v), 

D (v) implies the other and either implies A (2v). 
THEOREM 10. Given values of bi, b2, * * *, b, , c *, , ,c, either C(v) or D(v) 

defines a,j (i, j = 1, 2, * * *, v) uniquely. 
To prove Theorem 8 we use Theorems 1 and 2 to deduce B (2v) and E (v, v) 

and then Theorems 5 and 6 to deduce C (v) and D (v). 
Theorem 9 also follows easily from the previous results. From Theorems 3 and 

4, B (2v) with either of C (v), D (v) implies E (v, v); whereas from Theorems 5 and 
6, B (2v) and E (v, v) imply both C(v) and D (v). Finally we use Theorem 7 with 
the values X = t = v, v = 2v to deduce A (2v). 

Theorem 10 follows from the fact that C (v), D (v) each consist of v sets of v 
equations in v unknowns and since b1 , b2, * * *, b, are all non-zero and cl , 2, .*. *, 
are all distinct, the Matrices of the coefficients in the various sets are non-singular. 

The sets of equations symbolized by C (v) are slightly simpler than those sym- 
bolized by D (v) so it is the former sets that we use for practical evaluations of 
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all , a12, , a,. To find the parameters in a v stage Runge-Kutta process of 
order 2v we may thus perform the following steps 

(1) Evaluate the roots of P, (2c - 1) = 0 
(2) For each value of i (i = 1, 2, , v) find aij (j = 1, 2, * , v) as solutions 

to the linear system 

-1 1j ci (k = 1,2, ., v). 

(3) Find bj (j = 1, 2, v , v) as solutions to the linear system 

b b cjA = (k = 1, 2, , v). 
j=1 

In Table 2 values of the parameters are given for v = 1, 2, 3, 4, 5. It will be 
noticed that for the case v = 2 the process is the same as one suggested by Hammer 
and Hollingsworth [11]. 

4. The Error Term. For a process of order p, the two series (1) and (2) are 
identical for r ' p. Hence the error vector ' 

- y is given by 

A (f) hr F flh=r F r>p (r r. ~~~r>p (r 

and we shall suppose that h is sufficiently small for this to be approximated by 

~~ 1\~~F = 3F-= hp+' f,EF 
r=p+1 (r l )!\ ( p! r=p+l r=p+l 

where 

= -1, (38a 
ly p! 

The coefficient of hp+' in -y is called by Henrici [121 "the principal error func- 
tion" and our approximation is to assume that the principal error function is the 
only important contributor to the truncation error. 

We now restrict ourselves to the processes considered in the previous section 
so that p = 2v. We shall study properties of a for the different F of order 2v + 1 
so that a simple procedure can be found for evaluating e in these cases. 

Suppose for an elementary differential F of order 2v + 1 we have 

(10) F = {F1F2 .. F8} 

and the orders of F1, F2, ,F8 are r, r2, - - *, r8 . Then since 

1 + ri + r2 + ***+ r8 = 2v + 1 

it is clear that the number of r1 , r2 X X r8 which exceed v is either 0 or 1. In the 
former case we describe F as a "central" elementary differential and in the latter 
case a "non-central" elementary differential. 

If F is non-central, suppose r1 > v and that 

(11) F1 = {F1F2 . F}. 

Consider 

(12) F = {F1F2 . Fa{F2F3 ... F8}} 
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so that the orders fl, 2, * f , 2v + 1- ri of F1, 2, *,F, {F2F3 * F8} 
are each less than r1 while the order of F' is the same as that of F. 

Either F' is central or we may form F" from F in the same way as F' was 
formed from F. We may continue this process, forming in turn F, F', F", - - - until 
the sequence is terminated at a central elementary differential F* say. It will be 
proved that 8 = -5' and hence that 8 = -6' = 6" = = 46* where 6* corre- 
sponds to F* and the sign to be used is determined by the parity of the number of 
members in the sequence F', F", - - *, F*. 

We now summarize the principal result of this section. 
THEOREM 11. If F = {f2,}, 8 =- (v!)4/{ (2v) !(2v + 1) !}. 

THEOREM 12. If F is central, 8 = - (v!)4/{ [(2v) !]2 y}. 
TiEOREM 13. If F is non-central, and F' is as defined by (12), 8 = -6'. 
To prove Theorem 11 we write the polynomial P, (2c - 1) as 

P, (2c-1) = PO + PlC + P2C + ... + Pvc, 

and consider the equations B (2v), 

beik1 = 1k k = 1,2, ,2v 

together with the equation 
V ~~~1 
Ebi = 2- + 6. 2v+ 1 

Multiplying the equations of B (2v) for k = 1, 2, - , v + 1 by po, pi, ... , p" 
and adding we find 

po + p'/2 + P2/3 + + pp/(v + 1) = 0 

and similarly using the values k = 2, 3, * *, v + 2 in the same way and so on we 
find 

po/2 + pO/3 + P2/4 + **. + Pp/(v + 2) = 0 

Po/3 + pl/4 + P2/5 + + p,/(v + 3) = 0 

po/(v + 1)+ pl/(v + 2) + p2/(V + 3)+ * + Pv + = 

We now eliminate po, pi, p p, pv from this set of homogeneous linear equations 
and find 

i'+1 
1 ~ 1- 1+ 1 - 

2 3 4 *--3v+2 0 

1 1 1 1 +8 

v +1 v +2 v +3 2v+ 1 
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so that 

(2v)!(2v + 1) ! 

where we have written (see for example [13]) 

DN = 1 1 1 . 1 [1!2!3! . (N-1)!]3 DN = 1 2 3 * N N!(N+ 1)! . (2N-1)! 

1 1 1 1 
2 3 4N+1 

1 1 N1 1 
N N+1 N+2 2N-1 

This completes the proof of Theorem 11. 
Since ri , r2, . * *, r8 are no more than v for a central elementary differential (8) 

holds and the proof of the lemma that was introduced before that of Theorem 7 
holds in this case as well. We thus have 

yc = (2v + 1)[42P] = 1 - (V!)4/[(2v) !]2 

and Theorem 12 follows on dividing by y. 
Using the notation of (10), (11) and (12) we compute using, as usual, equation 

(31) of [1] 

-1 = r,1112 .. .. 

7 = rl(2v + 1) 112 1' 2a1273 * * Y8 

7= (2v + 1) (2v - r + 1>i112 * * * aY127Y3 * 8 

so that 

1 1 1__ _ _ _ 

7 7 2 -ri + 1)7Y 72 'Y* 
' 

Again employing the methods of Theorem 7 we arrive at the results 

qX = [q1 1 2v-rj] 

72 73 . . . 'Y 

= ~ ~~1 t4b1 - ['51 i)2 . .. 4> g2v-rj+1] 
(2v -r + 1)7273 ' * . - [ 

=>/ 1 [4Rl 4i2 . .. * Ou [02P-rj]] 
'Y2 'Y3 * Ya 

(= v - + 1)7 73 78 [i'1 c2 . . . 45a 1 2v-rj+1] 

(2v- ri + 1 )Y2 Y3 'ssY, 
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Hence 

(2v- r + 1)Y2 y3 -Y, 

1 1 

which is equivalent to the result of Theorem 13. 
Although in principal these results enable us to write down the coefficients for 

each elementary differential of order 2v + 1 occuring in 9 - y, the practical value 
of this is lessened by the large numbers of such terms which actually occur. How- 
ever, as some guide to the truncation error we shall evaluate the coefficients El and 
E2t, say, for F1 = {f2V} and F2 = 12JI2>. 

These may be regarded as extreme cases; F1 is the oiily elementary differential 
of order 2v + 1 which involves derivatives of order 2v of the elements of f (y) while 
F2 is the only elementary differential of the same order involving only first deriva- 

tives. If d is the matrix whose (i, j) element is then we can write 

n n n 92vf 
F, = fE E ... E 8 f - ilfi, .. 

fi2p 
i1=1 i2-1 '&2v=1 ftil 49M2 .. * *9M2, 

a, is given by Theorem 11 as- (v !)4/{ (2v) !(2v + 1) !} while i31 is given immediately 
from Theorem 7 of [1] as 1. 

Hence, we have 

Oi8 bi (v!1)4 
= (2v)! 

- 

[(2v) !]3(2v + 1) 

On the other hand, F2 is non-central and the central F* corresponding to it is 
{ {v-1 f}1} . 7* is (v !)2(2v + 1) so that 

52 * (2v)!(2v + 1)! 

and the upper (or lower) sign is to be used if v is even (or odd). It is easy to see 
that 32 iS (2v) ! Thus 

/2 62 2 (v 
_ )2 

E2 - (2v)! - (2v)1(2v + 1)! 

(2v) 
Vv) 

The first few values of E, and f2 may be found from Table 3. 
It is natural to compare the integration processes described here with methods 

based on quadrature formulae such as the method of Stoller and Morrison [14]. In 

t The convention concerning subscripted constants a, ,8, y will be extended to a and e. 
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TABLE 3 

v 1/fj 1/e2 

1 -24 +12 
2 -4320 -720 
3 -2 016000 +100800 
4 - 1778 112000 -25 401600 
5 -2 534876 467200 +10059 033600 

this type of method yi is estimated at xo + cih (i = 1, 2, * *, V) by some convenient 
integration process and y isfinally found at xo + h by the quadrature formula 

y = yo+h biff(yi) 

with an error supposed due only to the quadrature formula. 
In the cases where Gauss-Legendre quadrature is used it turns out that the 

principal error function is 

Elh2v+l (d Yo eih dx Y 

= e h2v+l ( E aF) 
r=2p+l 

and no coefficient eia exceeds the corresponding e found for the processes studied 
in this paper. Although no general rule can be made this suggests that there is a 
tendency for the methods of this paper to be the less accurate. On the other hand 
the lack of suitable integration formulae of sufficiently high accuracy for estimating 
yi (i = 1, 2, ... , v) in the cases v = 3, 4, * * * is a disadvantage of the other method. 

5. A Numerical Example. We now illustrate the process with v = 3 using it to 
find y(O.3) where 

Y= Y, y(O) = 1. 

For this equation all elementary differentials of order 2v + 1 = 7 vanisn identically 
except F2 so we find a principal error function yh7/100800. 

In the vicinity of y = 1 the value h = .3 gives as an estimate of the truncation 
error (.3)7/100800 ; 22 X 10-10. 

Using the starting values g (1) = g(2) = () = 1 and working to 10D, 8 iterations 
are required for convergence. The final values are g(1) = 1.0343925937, g(2) 
1.1618293499, g(3) = 1.3049861726 giving y(0.3) = 1.3498588105. This exceeds 
the true result, exp (0.3) = 1.3498588076 by 29 X 10 10 in reasonable agreement 
with our error estimate. 

Appendix. For a non-explicit process, g(l), g(2) ... g(v) would normally be 
found by an iterative procedure. If gN(i) denotes iterate number N for g(i) then a 
possible process would be 

(13) gN = f Yo + h ( aij gN + E aij gN-L1 
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We define 1 as the greatest of 

I a2i I| I a3i + I a32 ,***,|aal + I a,,2 |+ ***+ I a,,,-,| 

u as the greatest of 

I all I + I a12 1 + *** + I a,, 1, I a22 1 + I a23 I + *** + I a2^ ,**, I a,,, I 

and a as 1 + u. For a vector v = (v1 , v2, * * , v.) we denote by lvii the greatest 
of I vl 1, I v2 1, * j * v, Ij (any other norm could be used in the discussion which 
follows but we choose this one for definiteness). We now prove the following result: 

THEOREM 14. If f (y) satisfies a Lipschitz condition, 
jj f(y) - f(z) jj _ Liy - zl 

and I h I < 1/ (La) then the equations defining g(l), g(2) * * g() have a unique 
solution and gNv, g, ). ,2 * g9N() defined by (13) tend to this solution as N tends to 
infinity. 

To prove that there is no more than one solution we assume, on the contrary 
that there are two and denote these by g(l) g(2) . * * g(v) and g(l) 

g(2) 
. . . 

g(v) 

so that 

(14) g(i) = f (yo + h aijg(j)) 

(i) =f (yo + h aijg(j)) 
j=1 

Hence we have 

g ~ ~ jj )-()a1=||f(y (ajg(3)j())-f(O+hEajgi)0 

< jhj La x + jjg( )-E ) jJ 

j1 
< I h I L , Iaij 1I1 gj )-g 11) 

j=1 

< I h I La max 11 g(j) -g(j) 1 

Hence 

II g(i) - g(i) I I < max II g(j)-g II 

for all i, a contradiction. 
To prove the convergence of the iterative scheme a similar calculation to the 

above shows that 

|N I- < I h I L(l max - gN1Q || + u max || - gN-2 2|) 

and hence that 
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I jhjLu maIg -g.j 

maxjlg^)-gi)l1l -1 -~ 1 h I Ll ma 

h I L (a a - a I h I Ll- u max 11 gNLl -gN-2 

k max jj gNi- gN-2 || 

where k = I hLa < 1. 
From this it easily follows that every element of g g(t)N-gN21 has modulus less 

than Mk1N for some fixed M and this ensures the convergence of the sequence 
gy), N = 1, 2,... 

Suppose the limit of the sequence is g(i). It is trivial to show that 
g(l) g(2) . . .g"') satisfy the equation (14). 

Finally it may be noted that the transformation gai -*3 gN(t) is a "contraction 
mapping" [15] and Theorem 14 is a special case of a fundamental theorem on such 
mappings in complete metric spaces. 
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