
Error Analysis of Miller's Recurrence Algorithm 

By F. W. J. Olver 

Abstract. Miller's algorithm is a device for computing the most rapidly decreasing 
solution of a second-order linear difference equation. In this paper strict upper 
bouinds are given for the errors in the values yielded by the algorithm, and general 
conclusions are drawn concerning the accuracy of the process. 

1. Introduction. The recurrence algorithm we are concerned with here was 
originally devised by J. C. P. Miller for the computation of tables of the modified 
Bessel function I, (x) ([1], page xvii). The process was as follows. "Dummy" or 
"trial" values 1 and 0 are assigned to I, (x) and I,+, (x), respectively, where n is 
an arbitrarily chosen large positive integer. The recurrence relation 

(1.01) Ir-1(x) = (2r/x)Ir (X) + Ir+1(X) 

is then applied for r = n, n-1, , 1 in turn to generate a corresponding sequence 
of trial values of Ir (x) . In consequence of the initial conditions the rth trial value 
is equal to 

(1.02) X{Ir(x) + n_-r In+,(x) Kr(X)} 

where X is independent of r (in fact X = xKn+1 (x), but this expression is not used 
computationally). Now as n -o 0 In+1 (x) decreases rapidly and Kn+1 (x) increases 
rapidly. Hence by taking n to be sufficiently large we can ensure that for any given 
value of r, indeed for any given bounded range of values of r, the second term in 
the braces in (1.02) is negligible, so that the trial values effectively reduce to xIr (x). 
The "normalizing factor" X can be determined, for example, by dividing the trial 
value of Io(x) by the actual value of this function obtained from tables. Alter- 
natively, the normalization can be effected by application of either of the relations 

(1.03) Io (x) - 2I2(x) + 214(x) - . = 1, 

(1.04) Io(x) + 2I1(x) + 212(x) + - = eX. 

The use of tables of Bessel functions is then avoided altogether, a striking feature 
which is of especial importance in automatic computation. 

Following Miller's original use, similar processes have been used or described 
for other computations of Bessel functions ([2]-[9]), and also for the computation of 
repeated integrals of the error function ([10], [11]) and associated Legendre func- 
tions [12]. In some of these references, beginning with [2], the process is used in a 
form involving the ratios of the successive wanted functions; for this reason it is 
sometimes called the Ratio Method [8]. 

Recently, a method for solving ordinary differential equations in series of 
Chebyshev polynomials has been developed by C. W. Clenshaw [13] which has 
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features in common with the Miller algorithm. Indeed, for the differential system 

(1.05) y"(x) + k2y(x) = 0, y(0) = -2 y'(0) 0, 

Clenshaw's method of solution applied to the range -1 < x ? 1 becomes exactly 
the algorithm for the calculation of the Bessel functions Jr (k), with a normalizing 
condition of the form (1.03). 

For the general homogeneous linear difference equation of the second order 

(1.06) fr-1 + Prfr + qrfr?i = 0, 

together with a normalizing relation of the form 

(1.07) mOfO + mll1 + mf2 + *** 1, 

in which the irn are given numbers, the Miller algorithm may be formalized as 
follows. We construct a sequence of trial values a, according to the equations 

(1.08) a,+1 = 0, a. = 1, ar-1 -prar - qrar+l (r = n, n - 1, * , 1), 

and thence a further sequence 

(1.09) (Pr= ar/xA 

in which X is determined by 

(1.10) X = noao + mia, + + Mnan 

In the case in1 = m2 = = 0, that is, whenfo is prescribed, W. Gautschi [11] 
has shown, by an extension of the argument given in [1], that if (1.06) possesses a 
second solution gr which is non-vanishing and such that 

(1.11) fr/gr ? as r -> o, 

then for any fixed r 

(1.12) (r>fr as n -> oo. 

Gautschi has also shown, in unpublished work, that with suitable conditions the 
proof can be further extended to include the general normalizing condition (1.07). 

These results of Miller and Gautschi provide a satisfactory account of the 
convergence of the algorithm. They show that with appropriate conditions each f, 
can be computed to any desired accuracy by taking n, the point at which the back- 
wards recurrence begins, to be large enough, n _ nr . say. These results do not, 
however, supply a value for nr in any given example. Sometimes a suitable value 
for n, can be determined by use of known analytical properties of the solutions of 
the difference equation, as in [4], [8] and [11]. An alternative procedure is to compare 
the results of applying the algorithm for different values of n, described, for example, 
in [5] and [9]; this is generally an adequate check on the convergence in practice, 
though not entirely satisfactory from a mathematical standpoint. 

In the present paper, we do not use the condition (1.11). Instead, we make 
other assumptions concerning the nature of the solutions of the difference equation, 
from which we determine, by quite elementary analysis, simple strict error bounds 
for the results yielded by the algorithm. From these bounds we are able to draw 
interesting conclusions concerning the general accuracy of the method. 
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We shall suppose at first that the algorithm is applied with the use of exact 
arithmetic. Later, in ?4, we allow for the fact that in practice the trial values a, 
are generally rounded at each step of the recurrence, thus introducing another 
possible source of error. Only in [8] does the effect of rounding the a, appear to 
have been analysed before, but the treatment in this reference is of an approximate 
character, and is also less general than that presented below. 

2. Assumptions. The basic assumption we make in this paper is that the 
difference equation (1.06) has independent solutions f, and gr such that I fr I has 
acquired a moderately rapidly decreasing character and I gr I a moderately rapidly 
increasing character at the stage (r = n) at which the algorithm is applied. More 
precisely, we suppose that f. and gn+' do not vanish, that 

(2.01) P = I f+l+/fn I 
is small, and that the least quantity o- such that the inequalities 

(2.02) | gr/gn+j | 
n+l r 

hold for r = 0,1, , n, also is small. Here n is an arbitrary positive integer, and 
p, o- in general depend on n, but it is unnecessary to indicate this explicitly in the 
notation. 

We further suppose that the application of the algorithm is delayed until the 
series on the left of (1.07) is converging reasonably rapidly after its (n + 1)th 
term. To express this precisely, we introduce the notation 

1 00 

(2.03) m = max I mr , = ZE Mrfr . 
_<r<n Mf_ r=n+l 

Then the assumption of this paragraph is that r is small. We may notice that this 
condition is automatically fulfilled by the simplest type of normalization, in which 
fo is prescribed (and non-zero), for in this case r vanishes. 

Perhaps it should be stressed that actual values for the quantities p, o- and r do 
not need to be known in any given example, a mere knowledge that they are small 
suffices for the application of the error analysis of the following sections. 

In the case of Miller's Bessel-function example, given in ?1, the above conditions 
are fulfilled provided that n is taken to be somewhat larger than the argument x. 
This can be verified by inspecting tables of Bessel functions, or alternatively by 
examining the asymptotic behaviour of the Bessel functions for large orders. 
Similar verifications might be made in the case of other well-known special functions, 
for example, Legendre functions. 

In any case, however, it is frequently quite straightforward to determine the 
main features of the asymptotic behaviour of fr and gr directly from the difference 
equation (1.06), as in the example given in ?5 below. This will settle immediately 
the question whether the above conditions can be fulfilled; then inspection of the 
sequence of trial values will generally indicate whether n has been chosen large 
enough for fr. and gr to have attained their asymptotic forms at r = n. 

3. Error Analysis: Exact Arithmetic. The sequence ar, constructed according 
to equations (1.08), can be expressed as a linear combination of the fr and gr. 
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Using the given values at r = n and n + 1, we find that 

(3.01) a. = g?+1fr - f,+1 gr 
fn gn+1 - fn+l gn 

the non-vanishing of the denominator being a consequence of the assumed condi- 
tions of ?2 (compare (3.09) below). From (1.10) and (1.07), we find that 

(3.02) X = {gn+1 (1 E m. f)- fn+l Z migM}/ (fn gn+1 - fn+l gn). j=n+l i=? 

The "error" in which we are interested is the difference between (Pr that is, ar/X, 
and fr . Rather than consider this directly, however, we shall seek bounds for the 
quantity er, defined by 

(3.03) er = X (fr - Y7r) = Xfr -ar = a, (fr -Yr)/Ytr 

An interpretation of er is as follows. We have 

logi er = log ar I - 10g1o I Y7r/ (fr - (Pr) I 

Hence log1o I er I is the excess of the number of digits in the integer part of ar over 
the number of "correct" significant figures in (Pr . In particular, if I er I < 1 then the 
number of correct significant figures in (Pr is not less than the number of digits in the 
integer part of the corresponding trial value ar. 

Using (3.01) and (3.02), we derive 

er = {fn+1 r - ( E mj fj) g+1 fr 
j=n+l 

(3.04) - n~iif+f} (fg~ f~g) 

(j= M )g f +l fr} / Un gn+1 -fn+l gn ) 

Now when 0 _ r <_ n, we find from (2.01) and (2.02) that 

(3.05) I fn+1 gr I <p pn+l r I fn gn+1 1 

With the aid of (2.03), we obtain 

(3.06) 1 ( mi fj) gn+1 fr < ar I fn gn+1 I, 
where 

(3.07) a= mmax Ifr. 

Similarly, 

(3.08) i Mn g,) f+fl (i m g n+1 I 0n+1- ) P I fn I 
a 

< a I fn gn+1 I 

Next, we have I fn+lgn I < pO I fngn+ 1, and so 

(3.09) fngn+1 -fn+1gn I > (1 - PO) I fngn+1 | 

Substituting (3.05), (3.06), (3.08) and (3.09) in (3.04), we obtain our desired 
error bound: 

(3.10) 1 e7 ? (1 - )-1[{l-nr + (1 - o-1a}po + a z-] (O < r _ n). 
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With the assumed conditions of ?2, the quantities p, a- and r are all small. Clearly 
if a is not large compared with unity then I e, will not exceed unity. 

The interpretation of this extra condition depends on the relative magnitudes 
of the coefficients mr . We may judge from examples, however, that it is a reasonable 
condition to impose on the use of the algorithm. Suppose, for example, we normalize 
by use of a prescribed value of fo . Then we have in = 1/1 fo 1, and 

a = max I fr/fo I 

Thus a could be large only if fo is small compared with other members of the sequence 
fr , and we could not expect this method of normalization to be accurate in these 
circumstances. Alternatively, consider the case in which 

mO= im, mi= ?in (j_ 1); 

this occurs with (1.04), and also frequently with the boundary conditions in the 
Clenshaw method [13]. Then by requiring a to be of order unity, we are stipulating 
that there must not be excessive cancellation in summing the series (1.07), and it 
is known [1] that if such cancellation occurs, then inaccuracies may result. 

Summarizing this section so far, we have shown that with the conditions of ?2 
and the restriction that the quantity a defined by (3.07) must not be large com- 
pared with unity, I er I cannot exceed unity. Accordingly, when the algorithm is 
carried out with exact arithmetic each (Pr has at least as many correct significant 
figures as there are digits in the integer part of the corresponding ar. 

Remark. It might perhaps be thought that the condition that the second 
solution gr is increasing at r = n is overly strong, and that gr could be permitted 
to decrease, provided that its rate of decrease were less than that of fr . Certainly 
in these circumstances the algorithm may converge; see, for example, (1.11) and 
(1.12). In general, however, it would be untrue that I er ? 1; this is readily seen 
by considering the contribution of the term 

fn+1 gr . Jn+1 gr 

fn 9n+1 - fn+l gn fn a.+1 

on the right of (3.04). Thus in these circumstances conclusions concerning the 
accuracy of the sequence (Pr would necessarily be weaker. 

4. Effect of Rounding the Sequence of Trial Values. In applications, after 
computing each ar it is generally the practice to round its value to the nearest 
integer. To examine the effect of this upon the final sequence Pr X it suffices to con- 
sider the propagation of a single rounding error, say Es in aS , where 0 < s < n -1 

and I Es I < 12 

In this analysis, we shall use the well-known identity 

(4.01) fgas+1 -f.+lgq = qs?l (fs+las+2 -fs+2gs-r1)) 

obtained directly from the difference equation (1.06). Repeated application of this 
result gives 

(4.02) f8g+1 - fs+gs = qs+1q8+2 
... (qn (fngn+1 

- fn+1gn) 

As a consequence of (3.09), we see that the cross-product on the left of this equation 
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cannot vanish, provided that no coefficient qr vanishes; we shall assume this to be 
the case. 

Equation (3.01) now holds only for r > s. For other values of r, we find that 

(4.03) a = 
9+1 fr - f+1 gr + gs+1 fr - f8+1 gr (r< s). 
fn gn+1 - fn+l gn fs gs+1 f8+1 9s 

Accordingly, we obtain from (1.10) and (1.07) 

gn+1 (1 E M, f,) fn+l EM,, 
\ j=n+l j=0 

(4.04) 
fn 9n+1 - fn+l gn 

98+1 E mi fi)-f8+i E mi g8 
+ j=8+1 j=0 

fs 9e+1 - fs+1 go 

Again writing er = ?fr - ar, we find that 

(4.05) er = er 0) + -Yr,sEs 

where er'?) denotes the right side of (3.04) (that is, the er of ?3), and 

00 

f(1 gr -mj fj gs+1 fr 
j=s+l 

l ~ ~~~ -( mj gj) f+, fr (r _ s), 
(4.06) (fs 9s+i fs+1 gs)YXr,s = oo 

I(-E mj fj) g-+1fr j=8+1 

- -(mjgi)fs+ifr (r > s + 1). 

The bound (3.10) applies to er(?). To derive corresponding bounds for yr,, we 
denote by v the largest quantity for which the inequalities 

(4.07) fr < 1 (r==0,1, ,n) 
fn 

=n-r 
0 1 n 

hold. Since we have assumed in ?2 that Ifr I has acquired a moderately rapidly 
decreasing character by the time the point r = n has been reached, it follows that 
v is small. 

From (2.02), (2.03), (3.07) and (4.07), we find that 

(4.08) I f8ig I ' n+l-rvs+l-n n g g l I < n-sfr-n ni I 
\4j8=sf,+19 IrI fn) Ifn I fnn+11 

( mi fj) gs+lfjr E mujn + qMr fn gn+1 
I _n-, a 

(4.09) 38 + a 

<(1 + TV 1)a ~S8+-lI fn gn+1 
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and 

(4.10) | ( mM gi) f8+1 fT M '7 | 9n+1 V|+) I fn I - 
< on+l8s s+l-n ao v fn 9n+11. 

1 -"' Ifo- 
Also, from (3.09) and (4.02) we have 

(4.11) | fg,?+1 -f?+1g, I _ I qs lqs+2 ... (1 pO) I fngn +1. 

Substituting these inequalities in (4.06) and using the notation 

(4.12) b = max { 1.. 
o<sin-1 |q8+1 q8+2 . . . qn |V 

we find that 

(4.13 < b (1- )-l[s-r+l + a{run8-s-l + (1 - v)1 + O(1 - 

(4.13) ( (r < ) 
and 

4 I ' b (1- )-l[Vr-s-l + al runn-sl + (1 - v)u + o(1 -)} 
(4.14) > ) (r ? s + 1) . 

In ?3 we observed that if p, a., r are small and a is of order unity, then Ier(0) I < 1. 
Inspection of (4.13) and (4.14) shows that since v is small we shall also have 
I zr,s I < 1, provided that b is not large compared with unity. In order to evaluate 
this additional condition, consider the case in which pr and qr are both independent 
of r. The difference equation (1.06) is then solvable explicitly, and we find that 
a/v = qr and b = 1. In the general case we have to assume that Pr and qr are 
relatively slowly-varying functions of r. Then fr and gr behave locally as solutions 
of a difference equation with constant coefficients and hence we may expect b to 
be of order unity. 

Thus we conclude that if the sequence of trial values ar is rounded to the nearest 
integer at each step of the algorithm, then each cpr still has at least as many correct 
significant figures as there are digits in the art. In other words, the rounding proce- 
dure is justified, in the sense that it does not adversely affect our "guaranteed" 
accuracy of the algorithm. This point is discussed further in the next section. 

5. Example. We consider the solution of the difference equation 

(5.01) (2r - 1 )fril - 12rfr + (2r + 1 )fr+l = 0, 

with the condition 

(5.02) 2fo +f ++f2 +f3 + =1. 

This problem arose in the solution of a first-order differential equation by Clenshaw's 
method ([14], ?15). 

t In the case of the modified Bessel functions, this result is stated, without proof, in [31 
as a consequence of practical observation. 
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We apply formulas (1.08) to (1.10), taking 

pr = -12r/(2r - 1), qr = (2r + 1)/(2r - 1) 

and n = 4. The following sequences of trial values are then obtained. 

r a, (exact) ar (rounded) r 

0 4324k 4413 0 
1 372- a 380 --3 
2 47 3-X 49 0 
3 7 7 
4 1 1 0 
5 0 0 0 

Exact arithmetic has been used to compute the column headed ar (exact). In 
forming the next column, however, the ar have been rounded to the nearest integer 
at each step, the corresponding rounding errors 'E being given in the fourth column. 

We now form X by means of (1.10), taking mO -2 and mj = 1 (j > 1). 
This gives 

X = 259019 (for exact ar), X = 2643k (for rounded ar). 

The algorithm is completed by computing S?r = ar/X, and the results are given in 
the third and fifth columns in the next table. 

F-exact ar, F-rounded ar n 
r fr (Pr er (Pr er 

0 1.66925 37 1.66940 03 -0.380 1.66937 77 -0.328 
1 0.14373 42 0.14374 67 -0.032 0.14374 88 -0.039 
2 0.01851 87 0.01851 98 -0.003 0.01853 60 -0.046 
3 0.00264 94 0.00264 73 0.005 0.00264 80 0.004 
4 0.00039 79 0.00038 61 0.031 0.00037 83 0.052 

For comparison, we also give in this table accurate seven-decimal values of the 
fr, obtained by use of the algorithm with a higher value of n. Thence we are able 
to evaluate our measure er, defined by (3.03), for the discrepancy between fr 
and Pr . 

Our principal observation concerning these numerical results is that j er I no- 
where exceeds unity. This result is predicted by the analysis of the preceding 
sections, because the assumed conditions are readily seen to be satisfied in this 
example. For large r the difference equation (5.01) becomes asymptotically 

frl - 6fr + fr+il = 0, 

with solutions 

fr = (constant) X a-rv gr = (constant) X ac, where a = 3 + 2 V2 5.83. 

It is clear from the computed numerical values that this asymptotic character 
is attained by the decreasing solution fr by the stage r = 4. It is also quite easy 
to see, without carrying out detailed arithmetic, that the solution gr will have 
attained its rapidly increasing character by this stage. Therefore the quantities 
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p, a, r and v defined in ??2 and 4 are all small. The other conditions, that a and b 
(defined in ??3 and 4) be of order unity, are seen to be fulfilled, first because there 
was no concellation in summing the series (1.10), and secondly because the coef- 
ficients pr and q, are relatively slowly-varying functions of r. 

As a further illustration, let us normalize by means of the given value 
fo = 1.66925 37, instead of by use of (5.02). We then obtain the following results. 

F-exact ar-, r rounded ar,_ 
r sPr er (Pr er 

0 1.66925 37 0 1.66925 37 0 
1 0.14373 40 0.001 0.14373 81 -0.010 
2 0.01851 82 0.001 0.01853 47 -0.042 
3 0.00264 70 0.006 0.00264 78 0.004 
4 0.00038 60 0.031 0.00037 83 0.052 

Again I er I< 1, as expected. It may also be observed that this method of 
normalization yields somewhat smaller errors I e, j than the previous method in the 
case when the ar are computed exactly. The bound (3.10) indicates that this is 
generally true, unless the quantity a happens to be unduly large, because of the 
vanishing of the term in T. On the other hand, we may expect the contributions of 
the rounding errors e8 in the two methods to be comparable, because the dominant 
terms a(1 - v)-1 and Vr--1 (when r = s + 1) in the square brackets in (4.13) and 
(4.14) are of comparable size in the two cases. By forming the differences between 
the values of er obtained from the exact and rounded ar in the two methods, we see 
that this conclusion, also, is borne out by the example. 

As a final observation, we remark that the column of values given in this section 
headed ar (exact) differs from the corresponding numerical values given by Fox in 
the column ar(@) in Table 2 of [14]. This is because Fox, in effect, uses different initial 
conditions for his sequence. By superimposing an artificial "rounding error" 
E2 = -9/5 on our values of ar (exact), however, we reproduce Fox's sequence (apart 
from differences in sign); in this way his results are brought within the scope of the 
present error analysis. 

6. Conclusion. The Miller algorithm for the computation of the solution of the 
difference equation (1.06) which satisfies the condition (1.07) is given by (1.08), 
(1.09) and (1.10). We have shown that if the wanted solution fr and an independent 
solution gr satisfy the relations (2.01) and (2.02), in which p and a- are positive 
numbers less than unity, then the errors in the values ,Pr yielded by the algorithm 
are bounded by the strict inequality (3.10), in which er = X (fr - sPr) and r and a 
are defined by (2.03) and (3.07). 

We have also investigated the effects of rounding the sequence of trial values 
ar,, and have found that an error es introduced in a, increases er by mYr,,s X where 
lYr,s is subject to the strict inequalities (4.13) and (4.14) in which v (< 1) and b are 
defined by (4.07) and (4.12), respectively. 

We have seen that in circumstances in which the algorithm is commonly applied, 
p, o, r and v are small, and a and b are not large compared with unity. In consequence 
I er I < 1 and I Iy,g I < 1, which mean that the number of correct significant figures 
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in each fr yielded by the algorithm is not less than the number of digits in the 
integer part of the corresponding trial value ar, whether or not the ar are rounded 
during the computation. Thus the practice of repeating the algorithm with different 
starting positions n merely to ascertain the accuracy of the fr is often quite un- 
necessary. 

This theory has application to the automatic computation of many transcen- 
dental functions, and also to Clenshaw's method of solving ordinary linear differ- 
ential equations in series of Chebyshev polynomials in the case when the coefficients 
in this series satisfy a three-term recurrence relation. A comprehensive error analysis 
of the Clenshaw method has not been attempted, but by making assumptions of the 
type used in this paper it is quite possible that similar analysis will yield useful 
bounds in more complicated cases. 
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