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Integrals of the Error Function Complement 

By W. R. Wilcox 

Abstract. Previously, the complementary error function and its repeated 
integrals were given only for small values of the argument. Several new calcula- 
tion techniques are derived which permit evaluation for the complete range of the 
argument. Some new values of these functions for large values of the argument 
are calculated. These values are plotted in such a manner that approximate values 
can easily be found for all values of x. 

1. Introduction. The error function and its repeated integrals occur frequently 
in solutions to one-dimensional heat transfer and mass transfer problems. The 
error function is defined by 

(1) erf _ 2 e2 de 

and the complement of the error function by 

(2) erfc x 1- erf x = e- de 

The repeated integrals of the error function complement are defined by* 

(3) i' erfc x | 1 erf ede) forn = 1,2, 

with 

(4) i0erf x =erfc x 

Hartree [1] observed that y = i'erfc x satisfies the differential equation 

(5) dy + 2x -2ny = 0 

The repeated integrals of the error function complement also occur in solutions 
to problems in heat and mass transfer in which the conditions on the boundary 
of a semi-infinite body are given as a function of time [2, 3]. This follows from the 
fact that y = tn/2inerfc [x/(4Dt)'/2] satisfies the differential equation 

(6) ~~~~ ~~a2y 1 ay 
(6) a2Y _ =_ 0 ax2 D at 

2. Techniques of Computation. Previously [1, 4, 5-8], values for the comple- 
mentary error functionl and its repeated integrals were given only for small values 
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* In words, in erfc x denotes n repeated integrations from x to oo of the error function 

complement of x. 
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of the argument *. These prior evaluations were made by means of variations of 
the general recurrence formula: 

(7) 2nin erfc x = in2erfc x - 2xij' erfc x 

for n > 2, with 

(8) i erfc x = e (-x2) - x erfc x. 

Extensive tables for (c-) exp (-x2) and for erf x are given by the National 

Bureau of Standards [9]. 
The difficulty with this technique is that each successive integral is found by 

the difference of functions of the preceding two integrals. As this process is re- 
peated significant figures are rapidly lost. As a result the calculation is soon brought 
to a halt as x and n increase, even when a modern digital computer is used. If 
Equation (2) is used along with the tables of erf x given in Ref. 9 to calculate erfc x 
a similar problem is encountered because erf x rapidly approaches unity as x in- 
creases. 

This paper describes a series approximation which becomes more accurate as x 
increases. Carslaw and Jaeger [2] give the following asymptotic series for erfc 
with large x: 

exp (- x) [ 1 1*3 1*3 - 
(9) erfecx L 23x6?l- - 

X(/r 2x2 22x4 23 6 

Since this series is not convergent it is terminated at the first term which is larger 
than the previous one. Substitution of Equation (9) into Equation (8) yields 

(10) i erfcx -2 1 exp 2-x )[-5 7 + 1* 2V7-r x 2 2x2 22x4 ~~2 3x6 

This enables calculation of i erfc x for large x. In a like manner it can be shown that 

(11) in erfc x _ /7 
2 exp ( 2) 1 + E( 1) 1,n 

V\ir (2x)n?l ~ X 2'x 'Ji 

A general formula for r,,n is found by substitution of Equation (11) into Equation 
(7), equating terms of like powers of x, and applying the results repeatedly, to be 

(12) r7n = 1-3-5. .- (2i - I)(n + 2i)2i, 

where (n + 2i)2i is a binomial coefficient. 
Similar asymptotic expressions for x < 1 for the repeated integrals may be 

found by use of Taylor's series for erf x and exp (- x2) with repeated application of 
the recurrence equation (7). Values of the repeated integrals for x = 0 are found 
by repeated application of Eq. (7) to be [1]: 

in1 

(13) 2nerfe 0 = 
( 1= 

2 ~ 2~P + 

* The British Association Mathemnatical Tables [5] actually give tabulations of Hh (Herm- 
itian probability) functions. Values of in erfe (x) are obtainable from the relationship 

in erfc (x) = 2-i-(2/7r)WHhn(xN/2) 
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TABLE 1 

(2x)n+l.V/-ijn erfc x [ 1=, r, Tabulation of - ep X2) or 1+ (-1)i 2i as a Futnction of x* and n 

x n=O n=1 n=2 n=3 

Kaye Present Kaye Present Kaye Present Kaye Present 

0 0 0 0 0 
.01 0.01753 1.965 X 10-4 1.733 X 10-6 1.298 X 10-8 
.1 0.1589 0.01682 5.004 X 10-3 1.027 X 10-4 
.5 0.5456 0.2272 0.07962 0.02459 

1 0.7262 0.313 0.4842 0.250 0.2736 -0.500 0.1404 -1.50 
1.5 0.8539 0.844 0.6528 0.505 0.4558 0.333 0.2956 -0.111 
2 0.9054 0.904 0.7570 0.726 0.5913 0.543 0.4384 0.375 
2.5 0.934 0.934 0.821 0.684 0.549 
3 0.951 0.866 0.760 0.610 
4 0.971 0.918 0.847 0.771 
5 _ 0.981 0.945 0.8952 0.837 

x n=4 n=5 n=6 n=7 

Kaye Present Kaye Present Kaye Present Kaye Present 

0 0 0 0 0 
.01 8.597 X 10-' 5.156 X 10-'3 2.848 X 10-"5 1.465 X 10-17 
.1 6.590 X 10- 3.842 X 10-7 2.068 X 10-8 1.039 X 10-' 
.5 6.878 X 10-3 1.772 X 10-3 4.255 X 10-4 9.615 X 10-6 

1 0.06656 -2.75 0.0295 -4.25 0.01235 -6.00 4.903 X 10-3 -8.00 
1.5 0.1801 -0.666 0.1039 -1.33 0.05721 -2.11 0.03008 -3.00 
2 (0?33)t 0.0625 (0.22) -0.312 (0.14) -0.750 (0.083) -1.25 
2.5 (0.42) 0.400 (0.32) 0.160 (0.22) -0.120 (0.15) -0.440 
3 0.519 (0.42) 0.417 (0.33) 0.222 (0.26) 0.000 
4 0.672 0.581 0.491 (0.41) 0.438 
5 0.765 0.691 0.616 0.542 

* Values of F(n, x) calculated from Kaye's data [4] for in erfc x. Values of [1 + E] as 
calculated in this paper. Present asymptotic calculation technique is valid when these two 
values are approximately equial. 

t Note: Numbers in parenthesis were derived by extrapolation in Figure 1. 

The foregoing provides the means to calculate in erfc a for both high and low 
values of x without taking repeated differences. Finally, from the standpoint of 
completeness, it is of some interest to reexamine the relation given by equation (7). 
If we apply equation (7) repeatedly we obtain the following: 

in X .n-1 in-2 erfc x 
erfc x = -- z erfc x + 

n 2n 

,~~~~~~ 
2 ~ ~ ~ 

= i 
n-2 erfe x ( + 

x 
1-i n---3 erfc x 11 x 

2(nn-2) \2n n(n- 

= etc. 

In this way each in erfc x can be related clear back to a single difference between 
functions of erfc x and ierfc x. As x decreases and n increases these expressions 
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FIG. 1. -2-(2x)u+/rinerf As a Function of n for Various Values of x. x-values from Kaye FI.1 
2exp (-x') 

[4]. 0-values of (1 + Z) from this paper. 

become increasingly accurate and do not depend on repeated difference operations, 
so that a respectable number of significant figures can be obtained. 

3. Numerical Values. As shown in Table 2 and Figure 3, Kaye [4] has cal- 
culated in erfc x for small values of x using the repeated difference method of equa- 
tion (7). The present work was intended to extend these results to higher values of 
x. The calculations were performed on a desk calculator. The infinite series method 
of equation (11) was used. As noted previously, these series are not convergent. 
Consequently, in obtaining approximate values for [1 + E ]*, the summation was 
stopped at the first negative term (i, odd) for which the value is greater than the 

* E is used in place of E (- - to save space. 
,i== 2iX2i 
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from Kaye [4]. 0-values of - E from this paper. 

previous niegative term. In addition, only half of the value of this last term was 
used, since comparison with Kaye's results, where possible, indicated that this 
method gave better results. As x increased, the relative value of this final term de- 
creased, and so the approximationi became increasingly accurate. The calculated 
values for the summations are giveni in Table 1. It is seen that the minimum value 
of x for which this approximate teclhniique works increases with increasing n. To 
the first approximation this minimum value of x is given by the condition that 
the first term, rl ,n/2x2, be less than 1, or that x > V/ri,n/2 = /(n+ 2)2/V2. 
The values in parentheses in Table I were obtained by extrapolation of plots of 
F(n, x) * as a functionl of n for constaint x, as shown in Figure 1. From Figure 1 

(2x)n+1V/7r in erfc x * Kx) istseuIi place of 2ex (- X2) 
to, save space. 
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TABLE 2 
Repeated Integrals of the Error Function, in erfc x* 

x erfc x i erfc x i2 erfc 

Kaye Present Kaye Present Kaye Present 
0 1.000 0.5642 0.2500 

.01 0.9887 0.5542 0.2444 

.1 0.8875 0.4698 0.1984 

.5 0.4795 0.1996 0.06997 
1 0.1573 0.05026 0.01420 
1.5 0.03390 0.0334 8.623 X 10-3 2.007 X 10-3 

2 4.678 X 10-3 4.67 X 10-3 9.78 X 10-4 9.38 X 10-4 1.91 X 10-4 1.75 X 10--4 
2.5 4.07 X 10-4 4.07 X 10-4 7.15 X 10-5 1.19 X 10-5 
3 2.21 X 10-5 3.35 X 10-6 4.90 X 10-7 
4 1.54 X 10-8 1.82 X 10- 2.10 X 10-10 
5 1.57 X 10-12 1.48 X 10-13 1.40 X 10-14 

X i3 erfe x i4 erfe x i5 erfe x 

Kaye Present Kaye Present Kaye Present 
0 0.09403 0.03125 9.403 X 10-3 

.01 0.09156 0.03032 9.095 X 10-3 

.1 0.07169 0.02301 6.709 X 10-3 

.5 0.02161 6.044 X 10-- 1.557 X 10-3 
1 3.643 X 10-3 8.639 X 10-4 1.916 X 10-4 

1.5 4.339 X 10-4 8.81 X 10-5 1.695 X 10-5 
2 3.54 X 10-s (6.7 X 10-6)t (1.1 X 10-6) 
2.5 1.91 X 10-6 (2.9 X 10-7) (4.5 X 10-8) 
3 6.56 X 10-8 9.43 X 10-9 (1.3 X 10-9) 
4 2.39 X 10-11 2.61 X 10-12 ;2.81 X 10-13 
5 1.31 X 10-16 1.20 X 10-16 11.08 X 10-17 

x i6 erfc x i7 erfc x 

Kaye Present Kaye Present 
0 2.604 X 10-3 6.716 X 10-4 

.01 2.512 X 10--- 6.461 X 10--4 

.1 1.805 X 1o--, 4.534 X 10-4 

.5 3.739 X 10-4 8.450 X 10-5 
1 4.007 X 10-5 7.958 X 10-6 
1.5 3.11 X 10-6 5.45 X 10-7 
2 (1.7 X 10-7) (2.6 X 10-8) 
2.5 (6.0 X 10-9) (8.2 X 10-10) 
3 1 (1.6 X 10-10) (2.1 X 10-11) 
4 2.97 X 10-14 (3.1 X 10-15) 
5 9.65 X 10-19 8.50 X 10-20 

* As given by Kaye [4], and as calculated in this paper. 
t Note: Numbers in parenthesis were derived by extrapolation in Figure 1. 

it is seen that F(n, x) approaches 1 as x increases and as n decreases. This is also 
shown clearly in Figure 2, which gives 1 - F(n, x) as a function of x with n con- 
stant. These figures also permit interpolation and extrapolation to find approxi- 
mate values for F(n, x) at values of x and n other than those given. 

From these results values for in erfc x were calculated using equation (11) 
and are given in Table 2. Since 2 exp (-x2)//7r(2x)f+1 can be calculated very 
accurately, the final fractional error in in erfc x is virtually that of F(n, x). For 
large x the variation in 2 exp (-\x2)/V7r(2x) + as a fun-ction of x, however, is very 
much greater than for F(n, x), so that the final results are quite adequate for en- 
gineering applications. This is illustrated in Figure 3, in which in eife x is given as a 
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FIG. 3. Repeated Integrals of the Error Function Complement as a Function of x. x- 
values froin Kaye [4]. 0-values from this paper. 

function of x for various values of n. It is apparent that these functions vary so 
rapidly with x that slight fractional errors become unimportant for engineering 
applications. 

4. Conclusions. New calculation techniques have been derived for the repeated 
integrals of the error function. These techniques do not depend on previous brute 
force methods using repeated differences which rapidly run out of significant figures 
even on large digital computers. Some new values of in erfc x for large values of x 
were calculated. These were plotted in such a manner that approximate values 
can easily be found for all values of x. 
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